Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey spaces
被引:3
作者:
Chen, Dongxiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
Chen, Dongxiang
[1
]
Chen, Xiaoli
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
Chen, Xiaoli
[1
]
Sun, Lijing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USAJiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
Sun, Lijing
[2
]
机构:
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
Ming Mei;
Euler equation;
Triebel-Lizorkin-Morrey space;
local well-posedness;
blow-up criterion;
paraproduct;
BESOV;
FLUID;
D O I:
10.1080/00036811.2018.1510491
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper establishes the local existence, uniqueness and a blow-up criterion for the solutions to the inviscid incompressible Euler equation in Triebel-Lizorkin-Morrey space . As an application, we also derive the global persistence of the initial regularity in Triebel-Lizorkin-Morrey space for the solutions of 2-D Euler equation. These results are established using the logarithmic inequality of Beal-Kato-Majda type, the Moser type of inequality and commutator estimates in Triebel-Lizorkin-Morrey space.
机构:
Chinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R China
机构:
Chinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Inst Math Sci, Dept Math, Shatin, Hong Kong, Peoples R China