Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey spaces

被引:3
作者
Chen, Dongxiang [1 ]
Chen, Xiaoli [1 ]
Sun, Lijing [2 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
关键词
Ming Mei; Euler equation; Triebel-Lizorkin-Morrey space; local well-posedness; blow-up criterion; paraproduct; BESOV; FLUID;
D O I
10.1080/00036811.2018.1510491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the local existence, uniqueness and a blow-up criterion for the solutions to the inviscid incompressible Euler equation in Triebel-Lizorkin-Morrey space . As an application, we also derive the global persistence of the initial regularity in Triebel-Lizorkin-Morrey space for the solutions of 2-D Euler equation. These results are established using the logarithmic inequality of Beal-Kato-Majda type, the Moser type of inequality and commutator estimates in Triebel-Lizorkin-Morrey space.
引用
收藏
页码:772 / 795
页数:24
相关论文
共 23 条
[21]  
Xu J, 2013, ARXIV13036005VLMATHA
[22]  
You W, 2010, LECT NOTES MATH, V2005
[23]   Local well-posedness for the incompressible Euler equations in the critical Besov spaces [J].
Zhou, Y .
ANNALES DE L INSTITUT FOURIER, 2004, 54 (03) :773-+