Well-posedness of the Euler equation in Triebel-Lizorkin-Morrey spaces

被引:3
作者
Chen, Dongxiang [1 ]
Chen, Xiaoli [1 ]
Sun, Lijing [2 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang, Jiangxi, Peoples R China
[2] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
关键词
Ming Mei; Euler equation; Triebel-Lizorkin-Morrey space; local well-posedness; blow-up criterion; paraproduct; BESOV; FLUID;
D O I
10.1080/00036811.2018.1510491
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes the local existence, uniqueness and a blow-up criterion for the solutions to the inviscid incompressible Euler equation in Triebel-Lizorkin-Morrey space . As an application, we also derive the global persistence of the initial regularity in Triebel-Lizorkin-Morrey space for the solutions of 2-D Euler equation. These results are established using the logarithmic inequality of Beal-Kato-Majda type, the Moser type of inequality and commutator estimates in Triebel-Lizorkin-Morrey space.
引用
收藏
页码:772 / 795
页数:24
相关论文
共 23 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[3]   On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces [J].
Chae, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (05) :654-678
[4]  
CHEMIN JY, 1992, J MATH PURE APPL, V71, P407
[5]   On the Well-posedness of the Ideal MHD Equations in the Triebel-Lizorkin Spaces [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) :561-578
[6]  
Fazier M, 1991, CBMS REGIONAL MATH
[7]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[8]   COMMUTATOR ESTIMATES AND THE EULER AND NAVIER-STOKES EQUATIONS [J].
KATO, T ;
PONCE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :891-907
[9]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
[10]   Limiting case of the Sobolev inequality in BMO, with application to the Euler equations [J].
Kozono, H ;
Taniuchi, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (01) :191-200