Lur'e-Postnikov Lyapunov function approach to global robust Mittag-Leffler stability of fractional-order neural networks

被引:8
|
作者
Song, Ka [1 ]
Wu, Huaiqin [1 ]
Wang, Lifei [1 ]
机构
[1] Yanshan Univ, Sch Sci, Qinhuangdao 066001, Peoples R China
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2017年
基金
中国国家自然科学基金;
关键词
fractional-order neural networks; global robust Mittag-Leffler stability; Lur'e-Postnikov type Lyapunov functional; Brouwer degree; linear matrix inequality; EXPONENTIAL STABILITY; CRITERIA;
D O I
10.1186/s13662-017-1298-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the global robust Mittag-Leffler stability analysis is preformed for fractional-order neural networks (FNNs) with parameter uncertainties. A new inequality with respect to the Caputo derivative of integer-order integral function with the variable upper limit is developed. By means of the properties of Brouwer degree and the matrix inequality analysis technique, the proof of the existence and uniqueness of equilibrium point is given. By using integer-order integral with the variable upper limit, Lur'e-Postnikov type Lyapunov functional candidate is constructed to address the global robust Mittag-Leffler stability condition in terms of linear matrix inequalities (LMIs). Finally, two examples are provided to illustrate the validity of the theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Lur’e-Postnikov Lyapunov function approach to global robust Mittag-Leffler stability of fractional-order neural networks
    Ka Song
    Huaiqin Wu
    Lifei Wang
    Advances in Difference Equations, 2017
  • [2] Lur'e Postnikov Lyapunov functional technique to global Mittag-Leffler stability of fractional-order neural networks with piecewise constant argument
    Wang, Li-Fei
    Wu, Huaiqin
    Liu, Da-Yan
    Boutat, Driss
    Chen, Yi-Ming
    NEUROCOMPUTING, 2018, 302 : 23 - 32
  • [3] Mittag-Leffler stability of fractional-order Hopfield neural networks
    Zhang, Shuo
    Yu, Yongguang
    Wang, Hu
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2015, 16 : 104 - 121
  • [4] LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses
    Wu, Huaiqin
    Zhang, Xinxin
    Xue, Shunhui
    Wang, Lifei
    Wang, Yu
    NEUROCOMPUTING, 2016, 193 : 148 - 154
  • [5] Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks
    Ren, Fengli
    Cao, Feng
    Cao, Jinde
    NEUROCOMPUTING, 2015, 160 : 185 - 190
  • [6] Global Mittag-Leffler Stabilization of Fractional-Order Memristive Neural Networks
    Wu, Ailong
    Zeng, Zhigang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (01) : 206 - 217
  • [7] Multiple Mittag-Leffler Stability of Fractional-Order Recurrent Neural Networks
    Liu, Peng
    Zeng, Zhigang
    Wang, Jun
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2017, 47 (08): : 2279 - 2288
  • [8] Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay
    Wang, Jingfeng
    Bai, Chuanzhi
    AIMS MATHEMATICS, 2023, 8 (10): : 22538 - 22552
  • [9] Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks
    Chen, Jiejie
    Zeng, Zhigang
    Jiang, Ping
    NEURAL NETWORKS, 2014, 51 : 1 - 8
  • [10] Global Mittag-Leffler synchronization of delayed fractional-order memristive neural networks
    Yingjie Fan
    Xia Huang
    Zhen Wang
    Jianwei Xia
    Yuxia Li
    Advances in Difference Equations, 2018