On the local fluctuations of last-passage percolation models

被引:18
|
作者
Cator, Eric [1 ]
Pimentel, Leandro P. R. [2 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
GROWTH;
D O I
10.1016/j.spa.2014.08.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using the fact that the Airy process describes the limiting fluctuations of the Hammersley last-passage percolation model, we prove that it behaves locally like a Brownian motion. Our method is quite straightforward, and it is based on a certain monotonicity and good control over the equilibrium measures of the Hammersley model (local comparison). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 551
页数:14
相关论文
共 50 条
  • [31] Last-passage algorithms for corner charge singularity of conductors
    Hwang, CO
    Won, T
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 47 : S464 - S466
  • [32] Busemann functions and equilibrium measures in last passage percolation models
    Cator, Eric
    Pimentel, Leandro P. R.
    PROBABILITY THEORY AND RELATED FIELDS, 2012, 154 (1-2) : 89 - 125
  • [33] Busemann functions and equilibrium measures in last passage percolation models
    Eric Cator
    Leandro P. R. Pimentel
    Probability Theory and Related Fields, 2012, 154 : 89 - 125
  • [34] Coalescence of geodesics in exactly solvable models of last passage percolation
    Basu, Riddhipratim
    Sarkar, Sourav
    Sly, Allan
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (09)
  • [35] Optimality Regions and Fluctuations for Bernoulli Last Passage Models
    Nicos Georgiou
    Janosch Ortmann
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [36] Optimality Regions and Fluctuations for Bernoulli Last Passage Models
    Georgiou, Nicos
    Ortmann, Janosch
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (03)
  • [37] Modulus of continuity for polymer fluctuations and weight profiles in Poissonian last passage percolation
    Hammond, Alan
    Sarkar, Sourav
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [38] Last-Passage Algorithm for Charge Distribution Over a Finite Region
    Jang, Hoseung
    Given, James
    Yu, Unjong
    Hwang, Chi-Ok
    ADVANCED THEORY AND SIMULATIONS, 2021, 4 (02)
  • [39] Fluctuations in first-passage percolation
    Sosoe, Philippe
    RANDOM GROWTH MODELS, 2018, 75 : 69 - 93
  • [40] On the Passage Time Geometry of the Last Passage Percolation Problem
    Alberts, Tom
    Cator, Eric
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 211 - 247