Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 47 条
  • [41] Longitudinal Vehicle Dynamics: A Comparison of Physical and Data-Driven Models Under Large-Scale Real-World Driving Conditions
    James, Sebastian S.
    Anderson, Sean R.
    Da Lio, Mauro
    IEEE ACCESS, 2020, 8 : 73714 - 73729
  • [42] mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data
    Feng, Huijuan
    Zhang, Xuegong
    Zhang, Chaolin
    NATURE COMMUNICATIONS, 2015, 6
  • [43] Common and specific large-scale brain changes in major depressive disorder, anxiety disorders, and chronic pain: a transdiagnostic multimodal meta-analysis of structural and functional MRI studies
    Brandl, Felix
    Weise, Benedikt
    Bratec, Satja Mulej
    Jassim, Nazia
    Ayala, Daniel Hoffmann
    Bertram, Teresa
    Ploner, Markus
    Sorg, Christian
    NEUROPSYCHOPHARMACOLOGY, 2022, 47 (05) : 1071 - 1080
  • [44] Large-scale differences in functional organization of left- and right-handed individuals using whole-brain, data-driven analysis of connectivity
    Tejavibulya, Link
    Peterson, Hannah
    Greene, Abigail
    Gao, Siyuan
    Rolison, Max
    Noble, Stephanie
    Scheinost, Dustin
    NEUROIMAGE, 2022, 252
  • [45] Impulse Response Optimization of Band-Limited Frequency Data for Hybrid Field-Circuit Simulation of Large-Scale Energy-Selective Diode Grids
    Yang, Cheng
    Bruens, Heinz-D.
    Liu, Peiguo
    Schuster, Christian
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2016, 58 (04) : 1072 - 1080
  • [46] Preclinical common data elements for general pharmacological studies (pharmacokinetic sample collection, tolerability, and drug administration). A report of the TASK3-WG1A General Pharmacology Working Group of the ILAE/AES Joint Translational Task Force
    Coles, Lisa
    Forcelli, Patrick A.
    Leclercq, Karine
    Katsarou, Anna-Maria
    Klein, Brian D.
    Potschka, Heidrun
    Koehling, Rudiger
    Harte-Hargrove, Lauren
    Galanopoulou, Aristea S.
    Metcalf, Cameron S.
    EPILEPSIA OPEN, 2023,
  • [47] Inter-Modality Source Coupling: A Fully-Automated Whole-Brain Data-Driven Structure-Function Fingerprint Shows Replicable Links to Reading in a Large-Scale (N∼8K) Analysis
    Kotoski, Aline
    Liu, Jingyu
    Morris, Robin
    Calhoun, Vince
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (12) : 3383 - 3389