Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 47 条
  • [31] Spatial Compounding of Volumetric Data Enables Freehand Optoacoustic Angiography of Large-Scale Vascular Networks
    Knauer, Nikolaus
    Dean-Ben, Xose Luis
    Razansky, Daniel
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (04) : 1160 - 1169
  • [32] Prefrontal, parietal, and limbic condition-dependent differences in bipolar disorder: a large-scale meta-analysis of functional neuroimaging studies
    Schumer, Maya C. C.
    Chase, Henry W. W.
    Rozovsky, Renata
    Eickhoff, Simon B. B.
    Phillips, Mary L. L.
    MOLECULAR PSYCHIATRY, 2023, 28 (07) : 2826 - 2838
  • [33] Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0
    The, Matthew
    MacCoss, Michael J.
    Noble, William S.
    Kall, Lukas
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2016, 27 (11) : 1719 - 1727
  • [34] Adaptive Constrained Independent Vector Analysis: An Effective Solution for Analysis of Large-Scale Medical Imaging Data
    Bhinge, Suchita
    Long, Qunfang
    Calhoun, Vince D.
    Adali, Tulay
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (06) : 1255 - 1264
  • [35] Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project
    Boubela, Roland N.
    Kalcher, Klaudius
    Huf, Wolfgang
    Nasel, Christian
    Moser, Ewald
    FRONTIERS IN NEUROSCIENCE, 2016, 9
  • [36] Large-Scale de novo Oligonucleotide Synthesis for Whole-Genome Synthesis and Data Storage: Challenges and Opportunities
    Song, Li-Fu
    Deng, Zheng-Hua
    Gong, Zi-Yi
    Li, Lu-Lu
    Li, Bing-Zhi
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [37] Retaining Adolescent and Young Adult Participants in Research During a Pandemic: Best Practices From Two Large-Scale Developmental Neuroimaging Studies (NCANDA and ABCD)
    Nooner, Kate B.
    Chung, Tammy
    Feldstein Ewing, Sarah W.
    Brumback, Ty
    Arwood, Zjanya
    Tapert, Susan F.
    Brown, Sandra A.
    Cottler, Linda
    FRONTIERS IN BEHAVIORAL NEUROSCIENCE, 2021, 14
  • [38] Common Data Elements for Disorders of Consciousness: Recommendations from the Working Group on Neuroimaging (4 OCT, 10.1007/s12028-023-01794-2, 2023)
    Edlow, Brian L.
    Boerwinkle, Varina L.
    Annen, Jitka
    Boly, Melanie
    Gosseries, Olivia
    Laureys, Steven
    Mukherjee, Pratik
    Puybasset, Louis
    Stevens, Robert D.
    Threlkeld, Zachary D.
    Newcombe, Virginia F. J.
    Fernandez-Espejo, Davinia
    NEUROCRITICAL CARE, 2023, 39 (03) : 753 - 753
  • [39] Uncovering immobilized trypsin digestion features from large-scale proteome data generated by high-resolution mass spectrometry
    Sun, Liangliang
    Zhu, Guijie
    Yan, Xiaojing
    Mou, Si
    Dovichi, Norman J.
    JOURNAL OF CHROMATOGRAPHY A, 2014, 1337 : 40 - 47
  • [40] One-class tensor machine with randomized projection for large-scale anomaly detection in high-dimensional and noisy data
    Razzak, Imran
    Moustafa, Nour
    Mumtaz, Shahid
    Xu, Guangdong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (08) : 4515 - 4536