Common Data Elements, Scalable Data Management Infrastructure, and Analytics Workflows for Large-Scale Neuroimaging Studies

被引:6
|
作者
Kuplicki, Rayus [1 ]
Touthang, James [1 ]
Al Zoubi, Obada [1 ]
Mayeli, Ahmad [1 ]
Misaki, Masaya [1 ]
Aupperle, Robin L. [1 ,2 ]
Teague, T. Kent [3 ,4 ,5 ]
McKinney, Brett A. [6 ,7 ]
Paulus, Martin P. [1 ]
Bodurka, Jerzy [1 ,8 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Tulsa, Dept Community Med, Oxley Coll Hlth Sci, Tulsa, OK 74104 USA
[3] Univ Oklahoma, Dept Surg, Sch Community Med, Tulsa, OK USA
[4] Univ Oklahoma, Dept Psychiat, Sch Community Med, Tulsa, OK USA
[5] Oklahoma State Univ, Dept Biochem & Microbiol, Ctr Hlth Sci, Tulsa, OK USA
[6] Univ Tulsa, Dept Math, Tulsa, OK 74104 USA
[7] Univ Tulsa, Tandy Sch Comp Sci, Tulsa, OK 74104 USA
[8] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
FRONTIERS IN PSYCHIATRY | 2021年 / 12卷
基金
美国国家卫生研究院;
关键词
human brain; neuroimaging; multi-level assessment; large-scale studies; common data element; data processing pipelines; scalable analytics; bids format; MOTION CORRECTION; FMRI; ACCURATE; ROBUST;
D O I
10.3389/fpsyt.2021.682495
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Neuroscience studies require considerable bioinformatic support and expertise. Numerous high-dimensional and multimodal datasets must be preprocessed and integrated to create robust and reproducible analysis pipelines. We describe a common data elements and scalable data management infrastructure that allows multiple analytics workflows to facilitate preprocessing, analysis and sharing of large-scale multi-level data. The process uses the Brain Imaging Data Structure (BIDS) format and supports MRI, fMRI, EEG, clinical, and laboratory data. The infrastructure provides support for other datasets such as Fitbit and flexibility for developers to customize the integration of new types of data. Exemplar results from 200+ participants and 11 different pipelines demonstrate the utility of the infrastructure.
引用
收藏
页数:12
相关论文
共 47 条
  • [21] Editorial: Emerging trends in large-scale data analysis for neuroscience research
    Nathoo, Farouk S.
    Krigolson, Olave E.
    Wang, Fang
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [22] How to assess common somatic symptoms in large-scale studies: A systematic review of questionnaires
    Zijlema, Wilma L.
    Stolk, Ronald P.
    Loewe, Bernd
    Rief, Winfried
    White, Peter D.
    Rosmalen, Judith G. M.
    JOURNAL OF PSYCHOSOMATIC RESEARCH, 2013, 74 (06) : 459 - 468
  • [23] An efficient format-independent watermarking framework for large-scale data sets
    Rani, Sapana
    Halder, Raju
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 208
  • [24] Visual systems for interactive exploration and mining of large-scale neuroinnaging data archives
    Bowman, Ian
    Joshi, Shantanu H.
    Van Horn, John D.
    FRONTIERS IN NEUROINFORMATICS, 2012, 6
  • [25] Distributed Nonparametric Regression Imputation for Missing Response Problems with Large-scale Data
    Wang, Ruoyu
    Su, Miaomiao
    Wang, Qihua
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [26] WEAK RESPONSE INHIBITION AND THE BRAIN: VALIDATING A SCALE MEASURE OF TRAIT DISINHIBITION IN A LARGE NEUROIMAGING DATA SET
    Patrick, Christopher J.
    Foell, Jens
    Heinrich, Angela
    Worthy, Darrell A.
    Iacono, William G.
    Flor, Herta
    PSYCHOPHYSIOLOGY, 2015, 52 : S59 - S59
  • [27] Common data elements collected among universities for sport-related concussion studies
    Yang J.
    Peek-Asa C.
    Noble J.M.
    Torner J.
    Schmidt P.
    Cooper M.L.
    Injury Epidemiology, 5 (1)
  • [28] Investigation of large-scale extended Granger causality (lsXGC) on synthetic functional MRI data
    Wismueller, Axel
    Vosoughi, M. Ali
    DSouza, Adora
    Abidin, Anas Z.
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [29] Robust variable selection and distributed inference using τ-based estimators for large-scale data
    Mozafari-Majd, Emadaldin
    Koivunen, Visa
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2453 - 2457
  • [30] A probabilistic atlas of the human motion complex built from large-scale functional localizer data
    Huang, Taicheng
    Chen, Xiayu
    Jiang, Jian
    Zhen, Zonglei
    Liu, Jia
    HUMAN BRAIN MAPPING, 2019, 40 (12) : 3475 - 3487