Deterministic Positioning of Colloidal Quantum Dots on Silicon Nitride Nanobeam Cavities

被引:56
作者
Chen, Yueyang [1 ]
Ryou, Albert [1 ]
Friedfeld, Max R. [2 ]
Fryett, Taylor [1 ]
Whitehead, James [1 ]
Cossairt, Brandi M. [2 ]
Majumdar, Arka [1 ,3 ]
机构
[1] Univ Washington, Elect Engn, Seattle, WA 98189 USA
[2] Univ Washington, Dept Chem, Seattle, WA 98189 USA
[3] Univ Washington, Dept Phys, Seattle, WA 98189 USA
基金
美国国家科学基金会;
关键词
Photonic crystal cavity; colloidal quantum dots; light-matter interaction; hybrid integrated photonics; NANOCRYSTALS; FABRICATION; EMISSION; LASERS; LIGHT; CHIP;
D O I
10.1021/acs.nanolett.8b02764
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Engineering an array of precisely located cavity-coupled active media poses a major experimental challenge in the field of hybrid integrated photonics. We deterministically position solution-processed colloidal quantum dots (QDs) on high quality (Q)-factor silicon nitride nanobeam cavities and demonstrate light-matter coupling. By lithographically defining a window on top of an encapsulated cavity that is cladded in a polymer resist, and spin coating the QD solution, we can precisely control the placement of the QDs, which subsequently couple to the cavity. We show rudimentary control of the number of QDs coupled to the cavity by modifying the size of the window. Furthermore, we demonstrate Purcell enhancement and saturable photoluminescence in this QD-cavity platform. Finally, we deterministically position QDs on a photonic molecule and observe QD-coupled cavity supermodes. Our results pave the way for precisely controlling the number of QDs coupled to a cavity by engineering the window size, the QD dimension, and the solution chemistry and will allow advanced studies in cavity enhanced single photon emission, ultralow power nonlinear optics, and quantum many-body simulations with interacting photons.
引用
收藏
页码:6404 / 6410
页数:7
相关论文
共 49 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum [J].
Anikeeva, Polina O. ;
Halpert, Jonathan E. ;
Bawendi, Moungi G. ;
Bulovic, Vladimir .
NANO LETTERS, 2009, 9 (07) :2532-2536
[3]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[4]   Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide [J].
Bose, R. ;
Sridharan, D. ;
Solomon, G. S. ;
Waks, E. .
OPTICS EXPRESS, 2011, 19 (06) :5398-5409
[5]   Engineered quantum dot single-photon sources [J].
Buckley, Sonia ;
Rivoire, Kelley ;
Vuckovic, Jelena .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (12)
[6]   Quantum fluids of light [J].
Carusotto, Iacopo ;
Ciuti, Cristiano .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :299-366
[7]   Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots [J].
Chandrasekaran, Vigneshwaran ;
Tessier, Mickael D. ;
Dupont, Dorian ;
Geiregat, Pieter ;
Hens, Zeger ;
Brainis, Edouard .
NANO LETTERS, 2017, 17 (10) :6104-6109
[8]   Giant multishell CdSe nanocrystal quantum dots with suppressed blinking [J].
Chen, Yongfen ;
Vela, Javier ;
Htoon, Han ;
Casson, Joanna L. ;
Werder, Donald J. ;
Bussian, David A. ;
Klimov, Victor I. ;
Hollingsworth, Jennifer A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (15) :5026-5027
[9]   Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities [J].
Choi, Hyeongrak ;
Heuck, Mikkel ;
Englund, Dirk .
PHYSICAL REVIEW LETTERS, 2017, 118 (22)
[10]   Hybrid silicon lasers for optical interconnects [J].
Dai, Daoxin ;
Fang, Alexander ;
Bowers, John E. .
NEW JOURNAL OF PHYSICS, 2009, 11