Review of Second Generation Bioethanol Production from Residual Biomass

被引:340
|
作者
Robak, Katarzyna [1 ]
Balcerek, Maria [1 ]
机构
[1] Lodz Univ Technol, Inst Fermentat Technol & Microbiol, Fac Biotechnol & Food Sci, Dept Spirit & Yeast Technol, Wolczanska 171-173, PL-00024 Lodz, Poland
关键词
second generation bioethanol; biofuel; lignocellulosic biomass; biomass pretreatment; enzymatic hydrolysis; co-fermentation; FUEL ETHANOL-PRODUCTION; LIGNOCELLULOSIC BIOMASS; STEAM-EXPLOSION; SIMULTANEOUS SACCHARIFICATION; SACCHAROMYCES-CEREVISIAE; CELLULOSIC ETHANOL; CORN FIBER; FERMENTATION; PRETREATMENT; XYLOSE;
D O I
10.17113/ftb.56.02.18.5428
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
引用
收藏
页码:174 / 187
页数:14
相关论文
共 50 条
  • [1] Second-Generation Bioethanol from Residual Woody Biomass
    Requejo, Ana
    Peleteiro, Susana
    Rodriguez, Alejandro
    Garrote, Gil
    Carlos Parajo, Juan
    ENERGY & FUELS, 2011, 25 (10) : 4803 - 4810
  • [2] Recent technologies in second-generation bioethanol production from biomass: A review
    Abd, Athraa N.
    Shakor, Zaidoon M.
    Al-Zuhairi, Firas K.
    Al-Sheikh, Farooq
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2024,
  • [3] Bioethanol Production from Lignocellulosic Biomass, A Review
    Gamage, Joanne
    Lam, Howard
    Zhang, Zisheng
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2010, 4 (01) : 3 - 11
  • [4] Recent advancement in production of bioethanol from waste biomass: a review
    Chauhan, Shreya J.
    Patel, Bimalkumar
    Devliya, Bhargav
    Solanki, Hitesh
    Patel, Hitesh D.
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2023, 26 (11) : 3739 - 3759
  • [5] Second generation bioethanol production: A critical review
    Aditiya, H. B.
    Mahlia, T. M. I.
    Chong, W. T.
    Nur, Hadi
    Sebayang, A. H.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 66 : 631 - 653
  • [6] Production of bioethanol in a second generation prototype from pine wood chips
    Cotana, Franco
    Cavalaglio, Gianluca
    Gelosia, Mattia
    Nicolini, Andrea
    Coccia, Valentina
    Petrozzi, Alessandro
    ATI 2013 - 68TH CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2014, 45 : 42 - 51
  • [7] Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions
    Broda, Magdalena
    Yelle, Daniel J.
    Serwanska, Katarzyna
    MOLECULES, 2022, 27 (24):
  • [8] Rice Husk: A Potent Lignocellulosic Biomass for Second Generation Bioethanol Production from Klebsiella oxytoca ATCC 13182
    Tiwari, Shubhra
    Beliya, Esmil
    Vaswani, Monika
    Khawase, Khushbu
    Verma, Dristi
    Gupta, Nisha
    Paul, Jai Shankar
    Jadhav, Shailesh Kumar
    WASTE AND BIOMASS VALORIZATION, 2022, 13 (05) : 2749 - 2767
  • [9] Bioethanol from Lignocellulosic Biomass
    Zhao, Xin-Qing
    Zi, Li-Han
    Bai, Feng-Wu
    Lin, Hai-Long
    Hao, Xiao-Ming
    Yue, Guo-Jun
    Ho, Nancy W. Y.
    BIOTECHNOLOGY IN CHINA III: BIOFUELS AND BIOENERGY, 2012, 128 : 25 - 51
  • [10] Industrial technologies for bioethanol production from lignocellulosic biomass
    Chen, Hongzhang
    Fu, Xiaoguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 57 : 468 - 478