Spectral parameter power series representation for solutions of linear system of two first order differential equations

被引:4
作者
Gutierrez Jimenez, Nelson [1 ]
Torba, Sergii M. [2 ]
机构
[1] Univ Antioquia, Fac Ciencias Exactas & Nat, Inst Matemat, Calle 67 53-108, Medellin, Colombia
[2] IPN, CINVESTAV, Unidad Queretaro, Dept Matemat, Libramiento Norponiente 2000, Queretaro 76230, Qro, Mexico
关键词
Spectral parameter power series; Dirac system; Polya factorization; Sturm-Liouville spectral problem; Initial value problem; Numerical methods for ODE; SCHRODINGER-EQUATION; THEOREM;
D O I
10.1016/j.amc.2019.124911
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A representation in the form of spectral parameter power series (SPPS) is given for a general solution of a one dimension Dirac system containing arbitrary matrix coefficient at the spectral parameter, BdY/dX + P(x)Y = lambda R(x)Y, where Y = (y(1), y(2))(T) is the unknown vector-function, lambda is the spectral parameter, B = (0 1 -1 0) , and P is a symmetric 2 x 2 matrix, R is an arbitrary 2 x 2 matrix whose entries are integrable complex-valued functions. The coefficient functions in these series are obtained by recursively iterating a simple integration process, beginning with a nonvanishing solution for one particular lambda = lambda(0). The existence of such solution is shown. For a general linear system of two first order differential equations P(x)dY/dx + Q(x)Y = lambda R(x)Y, x is an element of [a, b], where P, Q, R are 2 x 2 matrices whose entries are integrable complex-valued functions, P being invertible for every x, a transformation reducing it to a system (*) is shown. The general scheme of application of the SPPS representation to the solution of initial value and spectral problems as well as numerical illustrations are provided. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 27 条
  • [1] Ablowitz M.J., 1981, Solitons and Inverse Scattering Transform
  • [2] On the computation of the eigenvalues of Dirac systems
    Annaby, M. H.
    Tharwat, M. M.
    [J]. CALCOLO, 2012, 49 (04) : 221 - 240
  • [3] Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances
    Aydogdu, Oktay
    Arda, Altug
    Sever, Ramazan
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
  • [4] Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide
    Barrera-Figueroa, V.
    Rabinovich, V. S.
    [J]. RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2016, 23 (02) : 139 - 163
  • [5] Numerical estimates of the essential spectra of quantum graphs with delta-interactions at vertices
    Barrera-Figueroa, Victor
    Rabinovich, Vladimir S.
    Maldonado Rosas, Miguel
    [J]. APPLICABLE ANALYSIS, 2019, 98 (1-2) : 458 - 482
  • [6] Effective numerical method of spectral analysis of quantum graphs
    Barrera-Figueroa, Victor
    Rabinovich, Vladimir S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (21)
  • [7] Spectral parameter power series method for discontinuous coefficients
    Blancarte, Herminio
    Campos, Hugo M.
    Khmelnytskaya, Kira V.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (10) : 2000 - 2011
  • [8] A GENERALIZATION OF A THEOREM OF MAMMANA
    Camporesi, Roberto
    Di Scala, Antonio J.
    [J]. COLLOQUIUM MATHEMATICUM, 2011, 122 (02) : 215 - 223
  • [9] Transmutations, L-bases and complete families of solutions of the stationary Schrodinger equation in the plane
    Campos, Hugo M.
    Kravchenko, Vladislav V.
    Torba, Sergii M.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1222 - 1238
  • [10] Analysis of graded-index optical fibers by the spectral parameter power series method
    Castillo-Perez, Raul
    Kravchenko, Vladislav V.
    Torba, Sergii M.
    [J]. JOURNAL OF OPTICS, 2015, 17 (02)