A non-resonant dielectric metamaterial for the enhancement of thin-film solar cells

被引:7
作者
Omelyanovich, M. [1 ]
Ovchinnikov, V. [2 ]
Simovski, C. [1 ,3 ]
机构
[1] Aalto Univ, Dept Radio Sci & Engn, FI-00076 Aalto, Finland
[2] Aalto Univ, Dept Aalto Nanofab, FI-00076 Aalto, Finland
[3] Natl Res Univ Informat Technol Mech & Opt ITMO, Int Lab Metamat, St Petersburg 197101, Russia
关键词
thin-film solar cells; anti-reflecting coating; omnidirectional coating; light-trapping structure; focusing; metamaterial; EFFICIENCY; LIGHT; ANTIREFLECTION; ABSORPTION;
D O I
10.1088/2040-8978/17/2/025102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently, we have suggested a dielectric metamaterial composed of an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our previous theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.
引用
收藏
页数:10
相关论文
共 27 条
[1]  
[Anonymous], 2009, ULTR LOW COST SOL EL
[2]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[3]   Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals [J].
Bermel, Peter ;
Luo, Chiyan ;
Zeng, Lirong ;
Kimerling, Lionel C. ;
Joannopoulos, John D. .
OPTICS EXPRESS, 2007, 15 (25) :16986-17000
[4]   Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells [J].
Burkhard, George F. ;
Hoke, Eric T. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2010, 22 (30) :3293-+
[5]   Solar Cell Light Trapping beyond the Ray Optic Limit [J].
Callahan, Dennis M. ;
Munday, Jeremy N. ;
Atwater, Harry A. .
NANO LETTERS, 2012, 12 (01) :214-218
[6]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[7]   Efficiency enhancement in GaAs solar cells using self-assembled microspheres [J].
Chang, Te-Hung ;
Wu, Pei-Hsuan ;
Chen, Sheng-Hui ;
Chan, Chia-Hua ;
Lee, Cheng-Chung ;
Chen, Chii-Chang ;
Su, Yan-Kuin .
OPTICS EXPRESS, 2009, 17 (08) :6519-6524
[8]   Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique [J].
Chen, ZG ;
Taflove, A ;
Backman, V .
OPTICS EXPRESS, 2004, 12 (07) :1214-1220
[9]   Silica nanoparticles on front glass for efficiency enhancement in superstrate-type amorphous silicon solar cells [J].
Das, Sonali ;
Banerjee, Chandan ;
Kundu, Avra ;
Dey, Prasenjit ;
Saha, Hiranmay ;
Datta, Swapan K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (41)
[10]   Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells [J].
Ferry, Vivian E. ;
Sweatlock, Luke A. ;
Pacifici, Domenico ;
Atwater, Harry A. .
NANO LETTERS, 2008, 8 (12) :4391-4397