Portfolio selection under parameter uncertainty using a predictive distribution

被引:0
|
作者
Im, Ji Jung [1 ]
Lim, Hyun Soo [1 ]
Choi, Sung Sub [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, South Korea
来源
ANNALS OF ECONOMICS AND FINANCE | 2007年 / 8卷 / 02期
关键词
portfolio selection; parameter uncertainty; estimation error; Bayesian framework; predictive distribution; generalized hyperbolic distribution; utility function; utility restoration ratio;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a portfolio selection model based on a generalized hyperbolic predictive distribution. This distribution incorporates uncertainties in mean and volatility of market returns. We then select an optimal portfolio with expected utility calculated tinder the predictive distribution. We demonstrate the performance of the new approach by applying it to simulated and real market data.
引用
收藏
页码:301 / 312
页数:12
相关论文
共 50 条
  • [21] Optimal Portfolio Selection Based on Expected Shortfall Under Generalized Hyperbolic Distribution
    Surya B.A.
    Kurniawan R.
    Asia-Pacific Financial Markets, 2014, 21 (3) : 193 - 236
  • [22] Distributionally robust optimization with Wasserstein metric for multi-period portfolio selection under uncertainty
    Wu, Zhongming
    Sun, Kexin
    APPLIED MATHEMATICAL MODELLING, 2023, 117 : 513 - 528
  • [23] Estimation of Optimal Portfolio Weights Under Parameter Uncertainty and User-Specified Constraints: A Perturbation Method
    Christopher J. Bennett
    Ričardas Zitikis
    Journal of Statistical Theory and Practice, 2014, 8 (3) : 423 - 438
  • [24] Estimation of Optimal Portfolio Weights Under Parameter Uncertainty and User-Specified Constraints: A Perturbation Method
    Bennett, Christopher J.
    Zitikis, Ricardas
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2014, 8 (03) : 423 - 438
  • [25] Robust Portfolio Selection with Distributional Uncertainty and Integer Constraints
    Huang, Ri-Peng
    Xu, Ze-Shui
    Qu, Shao-Jian
    Yang, Xiao-Guang
    Goh, Mark
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2025, 13 (01) : 56 - 82
  • [26] An improvement of the Parameter Certainty Equivalence method in portfolio selection
    Kashima H.
    Asia-Pacific Financial Markets, 2001, 8 (1) : 35 - 43
  • [27] Portfolio selection under VaR constraints
    Giannopoulos, Kostas
    Clark, Ephraim
    Tunaru, Radu
    COMPUTATIONAL MANAGEMENT SCIENCE, 2005, 2 (02) : 123 - 138
  • [28] Portfolio selection with quadratic utility function under fuzzy enviornment
    Zhang, JP
    Li, SM
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 2529 - 2533
  • [29] A Risk-Free Protection Index Model for Portfolio Selection with Entropy Constraint under an Uncertainty Framework
    Gao, Jianwei
    Liu, Huicheng
    ENTROPY, 2017, 19 (02):
  • [30] Optimal Portfolio Selection Using Tangent Utility Function
    Chao, Liu
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON PRODUCT INNOVATION MANAGEMENT, VOLS I AND II, 2009, : 1157 - 1162