GLOBAL AND GLOBAL LINEAR CONVERGENCE OF A SMOOTHING ALGORITHM FOR THE CARTESIAN P*(κ)-SCLCP

被引:7
|
作者
Huang, Zheng-Hai [1 ]
Lu, Nan [2 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
[2] Xidian Univ, Dept Math, Xian 710071, Peoples R China
关键词
Complementarity problem; symmetric cone; Euclidean Jordan algebra; smoothing algorithm; NONLINEAR COMPLEMENTARITY-PROBLEMS; INTERIOR CONTINUATION ALGORITHM; ONE-PARAMETRIC CLASS; QUADRATIC CONVERGENCE; NEWTON ALGORITHM; JORDAN ALGEBRAS; P-0;
D O I
10.3934/jimo.2012.8.67
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we consider the linear complementarity problem over Euclidean Jordan algebras with a Cartesian P-*(K)-transformation, which is denoted by the Cartesian P-*(K)-SCLCP. A smoothing algorithm is extended to solve the Cartesian P, (K)-SCLCP. We show that the algorithm is globally convergent if the problem concerned has a solution. In particular, we show that the algorithm is globally linearly convergent under a weak assumption.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条
  • [21] Global linear and quadratic one-step smoothing Newton method for vertical linear complementarity problems
    Zhang, LP
    Gao, ZY
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2003, 24 (06) : 738 - 746
  • [22] A SMOOTHING NEWTON METHOD FOR THE CARTESIAN P0-LCP OVER SYMMETRIC CONES
    Liu, Lixia
    Liu, Sanyang
    PACIFIC JOURNAL OF OPTIMIZATION, 2012, 8 (02): : 261 - 272
  • [23] A Global Linear and Local Quadratic Continuation Smoothing Method for Variational Inequalities with Box Constraints
    Bintong Chen
    Xiaojun Chen
    Computational Optimization and Applications, 2000, 17 : 131 - 158
  • [24] A global linear and local quadratic continuation smoothing method for variational inequalities with box constraints
    Chen, BT
    Chen, XJ
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 131 - 158
  • [25] A note on quadratic convergence of a smoothing Newton algorithm for the LCP
    Tie Ni
    Sheng-Long Hu
    Optimization Letters, 2013, 7 : 519 - 531
  • [26] A note on quadratic convergence of a smoothing Newton algorithm for the LCP
    Ni, Tie
    Hu, Sheng-Long
    OPTIMIZATION LETTERS, 2013, 7 (03) : 519 - 531
  • [27] Predictor-corrector inexact smoothing algorithm for symmetric cone complementarity problems with Cartesian P0-property
    Tang, Jingyong
    Huang, Chengdai
    Wang, Yongli
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 146 - 158
  • [28] A Regularization Smoothing Newton Method for the Symmetric Cone Complementarity Problem with the Cartesian P0-property
    Xiang-jing Liu
    San-yang Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 556 - 572
  • [29] Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP
    Jingyong Tang
    Jinchuan Zhou
    Liang Fang
    Optimization Letters, 2018, 12 : 411 - 424
  • [30] A NEW PARAMETRIC KERNEL FUNCTION YIELDING THE BEST KNOWN ITERATION BOUNDS OF INTERIOR-POINT METHODS FOR THE CARTESIAN P*(k)-SCLCP
    Cai, X. Z.
    Li, L.
    El Ghami, M.
    Steihaug, T.
    Wang, G. Q.
    PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (04): : 547 - 570