Image Registration Between Real Image and Virtual Image Based on Self-supervised Keypoint Learning

被引:0
|
作者
Kim, Sangwon [1 ]
Jang, In-Su [2 ]
Ko, Byoung Chul [1 ]
机构
[1] Keimyung Univ, Daegu, South Korea
[2] Elect & Telecommun Res Inst, Daegu, South Korea
来源
基金
新加坡国家研究基金会;
关键词
Digital twin; Keypoint detection; Self-supervised learning; GAN; 3D-2D registration;
D O I
10.1007/978-3-031-02444-3_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A digital twin is a next-generation technology that connects virtual and physical environments into a single world. Although the virtual environment of a digital twin models the real world, the technology used to match the real world with the virtual environment has yet to be studied. The existing deep-learning-based image registration methods aim to extract feature points and descriptors and show a good registration performance in real images. However, these methods are difficult to apply in an actual digital twin environment because 3D and real 2D images have a significant difference in terms of the external and physical characteristics of the image itself. In this paper, we propose a deep learning model that self-learns the difference between virtual and real environments using a generative-adversarial network and self-supervised learning. Image registration between virtual environments with real-world images is a new method that has not been previously achieved, and we have demonstrated experimentally that the proposed method is applicable to various virtual environments and real-world image matching.
引用
收藏
页码:402 / 410
页数:9
相关论文
共 50 条
  • [21] IMAGE ENHANCED ROTATION PREDICTION FOR SELF-SUPERVISED LEARNING
    Yamaguchi, Shinya
    Kanai, Sekitoshi
    Shioda, Tetsuya
    Takeda, Shoichiro
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 489 - 493
  • [22] Self-Supervised Joint Learning for pCLE Image Denoising
    Yang, Kun
    Zhang, Haojie
    Qiu, Yufei
    Zhai, Tong
    Zhang, Zhiguo
    SENSORS, 2024, 24 (09)
  • [23] Self-Supervised Representation Learning for Document Image Classification
    Siddiqui, Shoaib Ahmed
    Dengel, Andreas
    Ahmed, Sheraz
    IEEE ACCESS, 2021, 9 : 164358 - 164367
  • [24] Self-Supervised Viewpoint Learning From Image Collections
    Mustikovela, Siva Karthik
    Jampani, Varun
    De Mello, Shalini
    Liu, Sifei
    Iqbal, Umar
    Rother, Carsten
    Kautz, Jan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3970 - 3980
  • [25] Blind Restoration of a Single Real Turbulence-Degraded Image Based on Self-Supervised Learning
    Guo, Yiming
    Wu, Xiaoqing
    Qing, Chun
    Liu, Liyong
    Yang, Qike
    Hu, Xiaodan
    Qian, Xianmei
    Shao, Shiyong
    REMOTE SENSING, 2023, 15 (16)
  • [26] Pyramid-based self-supervised learning for histopathological image classification
    Wang, Junjie
    Quan, Hao
    Wang, Chengguang
    Yang, Genke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [27] Dimensionality Reduction Algorithm for Hyperspectral Image Based on Self-Supervised Learning
    Zhou Zheng
    Yang Yu
    Zhang Gan
    Xu Libing
    Wang Mingqing
    Zhu Qibing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (12)
  • [28] An image retrieval approach based on feature extraction and self-supervised learning
    Kolahkaj, Maral
    2022 SECOND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND HIGH PERFORMANCE COMPUTING (DCHPC), 2022, : 46 - 51
  • [29] Image Classification Algorithm Named OCFC Based on Self-supervised Learning
    Shu, Qihui
    Liu, Song
    Wang, Jianwen
    Lai, Qinghan
    Zhou, Zihan
    PROCEEDINGS OF 2020 IEEE 5TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2020), 2020, : 589 - 594
  • [30] Depth estimation algorithm of monocular image based on self-supervised learning
    Bai L.
    Liu L.-J.
    Li X.-A.
    Wu S.
    Liu R.-Q.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (04): : 1139 - 1145