Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3

被引:33
作者
Akhtar, Mohd Javed [1 ,2 ]
Ahamed, Maqusood [3 ]
Fareed, Mohd [4 ]
Alrokayan, Selman A. [3 ]
Kumar, Sudhir [1 ]
机构
[1] Univ Lucknow, Dept Zool, Lucknow 226007, Uttar Pradesh, India
[2] CSIR Indian Inst Toxicol Res, Fibre Toxicol Div, Lucknow 226001, Uttar Pradesh, India
[3] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
[4] CSIR Indian Inst Toxicol Res, Div Epidemiol, Lucknow 226001, Uttar Pradesh, India
关键词
CuO Nanoparticles; Cytotoxicity; ROS; Oxidative stress; Sulforaphane; Protection; PIGMENT EPITHELIAL-CELLS; THERMAL-CONDUCTIVITY; OXIDE NANOPARTICLES; SULFORAPHANE; CHEMOPREVENTION; INDUCTION; DAMAGE; ASSAY; SKIN; KERATINOCYTES;
D O I
10.2131/jts.37.139
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Despite the great interest in nanoparticles (NPs) safety, no comprehensive test paradigm has been developed. Oxidative stress has been implicated as an explanation behind the toxicity of NPs. It is reported that sulphoraphane (SFN) present in cruciferous vegetables like cauliflower and broccoli has potential to protect cells from oxidative damage and inflammation. However, protective role of SFN in nanotoxicity is not explored. We investigated the protective effect of SFN against the toxic response of copper oxide (CuO) NPs in mouse embryonic fibroblasts (BALB 3T3). Results showed that CuO NPs induced dose-dependent (5-15 mu g/ml) cytotoxicity in BALB 3T3 cells demonstrated by MTT and lactate dehydrogenase (LDH) assays. CuO NPs were also found to induce oxidative stress in dose-dependent manner indicated by induction of reactive oxygen species (ROS) and lipid peroxidation (LPO) and depletion of glutathione and glutathione reductase. Co-treatment of BALB 3T3 cells with SFN (6 mu M) significantly attenuated the cytotoxicity, ROS generation and oxidative stress caused by CuO NPs. Moreover, we found that co-treatment of another antioxidant N-acetyl-cysteine (NAC) (2 mM) also significantly attenuated glutathione depletion caused by CuO NPs but protection from the loss of cell viability due to CuO NPs exposure was not significant. We believe this is the first report showing that SFN significantly protected the BALB 3T3 cells from CuO NPs toxicity, which is mediated through generation of oxidants and depletion of antioxidants. Consequently, protective mechanism of SFN against CuO NPs toxicity was different from NAC that should be further investigated.
引用
收藏
页码:139 / 148
页数:10
相关论文
共 51 条
[1]   ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Raja, Mohan ;
Ahmad, Iqbal ;
Siddiqui, Mohammad Kaleem Javed ;
AlSalhi, Mohamad S. ;
Alrokayan, Salman A. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2011, 7 (06) :904-913
[2]   Toxic response of nickel nanoparticles in human lung epithelial A549 cells [J].
Ahamed, Maqusood .
TOXICOLOGY IN VITRO, 2011, 25 (04) :930-936
[3]   Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells [J].
Ahamed, Maqusood ;
Akhtar, Mohd Javed ;
Siddiqui, Maqsood A. ;
Ahmad, Javed ;
Musarrat, Javed ;
Al-Khedhairy, Abdulaziz A. ;
AlSalhi, Mohamad S. ;
Alrokayan, Salman A. .
TOXICOLOGY, 2011, 283 (2-3) :101-108
[4]   Silver nanoparticle applications and human health [J].
Ahamed, Maqusood ;
AlSalhi, Mohamad S. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2010, 411 (23-24) :1841-1848
[5]   Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells [J].
Ahamed, Maqusood ;
Siddiqui, Maqsood A. ;
Akhtar, Mohd J. ;
Ahmad, Iqbal ;
Pant, Aditya B. ;
Alhadlaq, Hisham A. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 396 (02) :578-583
[6]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[7]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[8]   Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Kumar, Sudhir ;
Siddiqui, Huma ;
Patil, Govil ;
Ashquin, Mohd ;
Ahmad, Iqbal .
TOXICOLOGY, 2010, 276 (02) :95-102
[9]   The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid [J].
Akhtar, Mohd Javed ;
Kumar, Sudhir ;
Murthy, Ramesh Chandra ;
Ashquin, Mohd ;
Khan, Mohd Imran ;
Patil, Govil ;
Ahmad, Iqbal .
TOXICOLOGY IN VITRO, 2010, 24 (04) :1139-1147
[10]   Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism [J].
Bai, Wei ;
Zhang, Zhiyong ;
Tian, Wenjing ;
He, Xiao ;
Ma, Yuhui ;
Zhao, Yuliang ;
Chai, Zhifang .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1645-1654