environmental scanning electron microscope;
electron microscope;
beam spread;
electron scattering;
skirt;
Monte Carlo;
model;
simulation;
D O I:
10.1002/sca.4950230505
中图分类号:
TH7 [仪器、仪表];
学科分类号:
0804 ;
080401 ;
081102 ;
摘要:
This work describes the comparison of experimental measurements of electron beam spread in the environmental scanning electron microscope with model predictions. Beam spreading is the result of primary electrons being scattered out of the focused beam by interaction with gas molecules in the low-vacuum specimen chamber. The scattered electrons form a skirt of electrons around the central probe. The intensity of the skirt depends on gas pressure in the chamber, beam-gas path length, beam energy, and gas composition. A model has been independently developed that, under a given set of conditions, predicts the radial intensity distribution of the scattered electrons. Experimental measurements of the intensity of the beam skirt were made under controlled conditions for comparison with model predictions of beam skirting. The model predicts the trends observed in the experimentally determined scattering intensities; however, there does appear to be a systematic deviation from the experimental measurements.