Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum

被引:4
作者
Bauman, P [1 ]
Jadallah, H
Phillips, D
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] New Mexico Inst Min & Technol, Dept Math, Socorro, NM 87801 USA
[3] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2012107
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The initial value problem for the time dependent Ginzburg-Landau equations used to model the electrodynamics of a superconducting body surrounded by a vacuum in R-3 is studied. We prove existence, uniqueness, and regularity results for solutions in the Coulomb, Lorentz, and temporal gauges. (c) 2005 American Institute of Physics.
引用
收藏
页数:25
相关论文
共 11 条
[1]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[2]   Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity [J].
Du, Q .
MATHEMATICS OF COMPUTATION, 1998, 67 (223) :965-986
[3]  
DU Q, 1994, APPL ANAL, V53, P1
[4]   Dynamics of the Ginzburg-Landau equations of superconductivity [J].
Fleckinger-Pelle, J ;
Kaper, HG ;
Takac, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (05) :647-665
[5]  
Gilbarg D., 2001, Classics in Mathematics
[6]  
GORKOV LP, 1968, SOV PHYS JETP-USSR, V27, P328
[7]  
Ladyzhenskaya O., 1968, LINEAR QUASILINEAR E, DOI DOI 10.1090/MMONO/023
[8]  
Ladyzhenskaya O. A., 1985, The Boundary Value Problems of Mathematical Physics
[9]   THE REGULARITY OF SOLUTIONS FOR THE CURL BOUNDARY-PROBLEMS AND GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
LIANG, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04) :529-542
[10]  
Nirenberg L., 1959, ANN SC NORM SUP PISA, V13, P123