Mode-converting coupler for silicon-on-sapphire devices

被引:1
|
作者
Zlatanovic, S. [1 ]
Offord, B. W. [1 ]
Owen, M. [2 ]
Shimabukuro, R. [1 ]
Jacobs, E. W. [1 ]
机构
[1] SPAWAR Syst Ctr Pacific, San Diego, CA 92125 USA
[2] DMEA, Mclean, VA USA
来源
SILICON PHOTONICS X | 2015年 / 9367卷
关键词
waveguides; silicon-on-sapphire; couplers; WAVE-GUIDES;
D O I
10.1117/12.2079671
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Silicon-on-sapphire devices are attractive for the mid-infrared optical applications up to 5 microns due to the low loss of both silicon and sapphire in this wavelength band. Designing efficient couplers for silicon-on-sapphire devices presents a challenge due to a highly confined mode in silicon and large values of refractive index of both silicon and sapphire. Here, we present design, fabrication, and measurements of a mode-converting coupler for silicon-on-sapphire waveguides. We utilize a mode converter layout that consists of a large waveguide that is overlays a silicon inverse tapered waveguide. While this geometry was previously utilized for silicon-on-oxide devices, the novelty is in using materials that are compatible with the silicon-on-sapphire platform. In the current coupler the overlaying waveguide is made of silicon nitride. Silicon nitride is the material of choice because of the large index of refraction and low absorption from near-infrared to mid-infrared. The couplers were fabricated using a 0.25 micron silicon-on-sapphire process. The measured coupling loss from tapered lensed silica fibers to the silicon was 4.8dB/coupler. We will describe some challenges in fabrication process and discuss ways to overcome them.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] SILICON-ON-SAPPHIRE SUBSTRATES OVERCOME MOS LIMITATIONS
    RAPP, AK
    ROSS, EC
    ELECTRONICS, 1972, 45 (20): : 113 - &
  • [42] Strain Reduction in Silicon-on-Sapphire by Wafer Bonding
    Imthurn, G. P.
    Miscione, A. M.
    Landry, K.
    Vaufredaz, A.
    Barge, T.
    Lagahe-Blanchard, C.
    2011 IEEE INTERNATIONAL SOI CONFERENCE, 2011,
  • [43] Nonvolatile flash memories in silicon-on-sapphire CMOS
    Yeh, Chun-Chen
    Culurciello, Eugenio
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2782 - 2785
  • [44] SILICON-ON-SAPPHIRE COMPLEMENTARY MOS MEMORY CELLS
    ALLISON, JF
    HEIMAN, FP
    BURNS, JR
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1967, SC 2 (04) : 208 - &
  • [45] BULK TRAPS IN SILICON-ON-SAPPHIRE BY CONDUCTANCE DLTS
    CHEN, JW
    KO, RJ
    BRZEZINSKI, DW
    FORBES, L
    DELLOCA, CJ
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1981, 28 (03) : 299 - 304
  • [46] Analysis of the growth dependences of silicon-on-sapphire heteroepitaxy
    D. A. Pavlov
    P. A. Shilyaev
    A. V. Pirogov
    N. O. Krivulin
    A. I. Bobrov
    M. D. Pegasina
    Semiconductors, 2013, 47 : 865 - 869
  • [47] Structural aspects of the interface in silicon-on-sapphire system
    Ben-Gurion Univ, Beer-Sheva, Israel
    Thin Solid Films, 1-2 (182-186):
  • [48] Silicon-on-sapphire for RF Si systems 2000
    Lagnado, I
    de la Houssaye, PR
    Dubbelday, WB
    Koester, SJ
    Hammond, R
    Chu, JO
    Ott, JA
    Mooney, PM
    Perraud, L
    Jenkins, KA
    2000 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, DIGEST OF PAPERS, 2000, : 79 - 82
  • [49] SILICON-ON-SAPPHIRE APPROACH AFFORDS FREEDOM AND FLEXIBILITY
    MILLER, A
    ELECTRONICS, 1967, 40 (04): : 171 - &
  • [50] Simulation and Optimization of Silicon-on-Sapphire Pressure Sensor
    Kulesh, N. A.
    Kudyukov, E. V.
    Balymov, K. G.
    Beloyshov, A. A.
    IV INTERNATIONAL YOUNG RESEARCHERS' CONFERENCE: PHYSICS, TECHNOLOGIES AND INNOVATION (PTI-2017), 2017, 1886