Elevated atmospheric CO2 changes phosphorus fractions in soils under a short rotation poplar plantation (EuroFACE)

被引:36
作者
Khan, Faisal N. [1 ]
Lukac, Martin [2 ]
Turner, Gordon [1 ]
Godbold, Douglas L. [1 ]
机构
[1] Univ Coll N Wales, Ctr Environm, Bangor LL57 2UW, Gwynedd, Wales
[2] Univ London Imperial Coll Sci Technol & Med, NERC, Ctr Populat Biol, Ascot SL5 7PY, Berks, England
基金
英国自然环境研究理事会;
关键词
elevated CO2; FACE; phosphorus fractionation; Populus; soil nutrients;
D O I
10.1016/j.soilbio.2008.02.008
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Future high levels of atmospheric carbon dioxide (CO2) may increase biomass production of terrestrial plants and hence plant requirements for soil mineral nutrients to sustain a greater biomass production. Phosphorus (P), an element essential for plant growth, is found in soils both in inorganic and in organic forms. In this work, three genotypes of Populus were grown under ambient and elevated atmospheric CO2 concentrations (FACE) for 5 years. An N fertilisation treatment was added in years 4 and 5 after planting. Using a fractionation scheme, total P was sequentially extracted using H2O, NaOH, HCl and HNO3, and P determined as both molybdate (Mo) reactive and total P. Molybdate-reactive P is defined as mainly inorganic but also some labile organic P which is determined by Vanado-molybdophosphoric acid colorimetric methods. Organic P was also measured to assess all plant available and weatherable P pools. We tested the hypotheses that higher P demand due to increased growth is met by a depletion of easily weatherable soil P pools, and that increased biomass inputs increases the amount of organic P in the soil. The concentration of organic P increased under FACE, but was associated with a decrease in total soil organic matter. The greatest increase in the soil P due to elevated CO2 was found in the HCl-extractable P fraction in the non-fertilised treatment. In the NaOH-extractable fraction the Mo-reactive P increased under FACE, but total P did not differ between ambient and FACE. The increase in both the NaOH- and HCl-extractable fractions was smaller after N addition. The results showed that elevated atmospheric CO2 has a positive effect on soil P availability rather than leading to depletion. We suggest that the increase in the NaOH- and HCl-extractable fractions is biologically driven by organic matter mineralization, weathering and mycorrhizal hyphal turnover. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1716 / 1723
页数:8
相关论文
共 63 条
[21]   METHOD TO MEASURE MICROBIAL PHOSPHATE IN SOILS [J].
HEDLEY, MJ ;
STEWART, JWB .
SOIL BIOLOGY & BIOCHEMISTRY, 1982, 14 (04) :377-385
[22]   CHANGES IN INORGANIC AND ORGANIC SOIL-PHOSPHORUS FRACTIONS INDUCED BY CULTIVATION PRACTICES AND BY LABORATORY INCUBATIONS [J].
HEDLEY, MJ ;
STEWART, JWB ;
CHAUHAN, BS .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1982, 46 (05) :970-976
[23]   More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect? [J].
Hoosbeek, MR ;
Lukac, M ;
van Dam, D ;
Godbold, DL ;
Velthorst, EJ ;
Biondi, FA ;
Peressotti, A ;
Cotrufo, MF ;
de Angelis, P ;
Scarascia-Mugnozza, G .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (01)
[24]  
Ineson P, 1996, PLANT SOIL, V187, P345, DOI 10.1007/BF00017099
[25]   Effects of elevated CO2 on nutrient cycling in a sweetgum plantation [J].
Johnson, DW ;
Cheng, W ;
Joslin, JD ;
Norby, RJ ;
Edwards, NT ;
Todd, DE .
BIOGEOCHEMISTRY, 2004, 69 (03) :379-403
[26]   The effects of elevated CO2 on nutrient distribution in a fire-adapted scrub oak forest [J].
Johnson, DW ;
Hungate, BA ;
Dijkstra, P ;
Hymus, G ;
Hinkle, CR ;
Stiling, P ;
Drake, BG .
ECOLOGICAL APPLICATIONS, 2003, 13 (05) :1388-1399
[27]   Effects of [CO2] and nitrogen fertilization on soils planted with ponderosa pine [J].
Johnson, DW ;
Cheng, W ;
Ball, JT .
PLANT AND SOIL, 2000, 224 (01) :99-113
[28]   Organic acids in the rhizosphere - a critical review [J].
Jones, DL .
PLANT AND SOIL, 1998, 205 (01) :25-44
[29]   The effect of plants on mineral weathering [J].
Kelly, EF ;
Chadwick, OA ;
Hilinski, TE .
BIOGEOCHEMISTRY, 1998, 42 (1-2) :21-53
[30]  
Kuo S., 1996, Methods of soil analysis. Part 3 - chemical methods., P869