Exact solutions of the Kemmer equation for a Dirac oscillator

被引:48
|
作者
Boumali, A
Chetouani, L [1 ]
机构
[1] Univ Constantine, Fac Sci, Dept Phys, Constantine 25000, Algeria
[2] Ctr Univ Tebessa, ISET, Tebessa 12000, Algeria
关键词
spin-1; particle; harmonic oscillator; Kemmer equation; Dirac equation;
D O I
10.1016/j.physleta.2005.08.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact solutions of Kemmer equation for charged, massive, spin-1 particles in the Dirac oscillator potential have been found. The eigensolutions of this potential have been calculated and discussed in both natural and unnatural parities. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 50 条
  • [1] An Algebraic Approach to the Kemmer Equation for Dirac Oscillator
    Motavalli, Hossein
    Fathezadeh, Samira
    Parhizkar, Mojtaba
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (11) : 3390 - 3397
  • [2] An Algebraic Approach to the Kemmer Equation for Dirac Oscillator
    Hossein Motavalli
    Samira Fathezadeh
    Mojtaba Parhizkar
    International Journal of Theoretical Physics, 2011, 50 : 3390 - 3397
  • [3] EXACT SOLUTIONS OF DIRAC EQUATION FOR A NEW SPHERICALLY ASYMMETRICAL SINGULAR OSCILLATOR
    Sun, Guo-Hua
    Dong, Shi-Hai
    MODERN PHYSICS LETTERS A, 2010, 25 (33) : 2849 - 2857
  • [4] FURTHER EXACT SOLUTIONS OF DIRAC EQUATION
    STANCIU, GN
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (10) : 2043 - +
  • [5] Some exact solutions of the Dirac equation
    De Castro, AS
    Franklin, J
    INTERNATIONAL WORKSHOP ON HADRON PHYSICS 2000: TOPICS ON THE STRUCTURE AND INTERACTION OF HADRONIC SYSTEMS, 2001, : 318 - 321
  • [6] EXACT SOLUTIONS OF DIRAC-EQUATION
    KULKARNI, SV
    SHARMA, LK
    PRAMANA, 1979, 12 (05) : 475 - 480
  • [7] NEW EXACT SOLUTIONS OF DIRAC EQUATION
    LAM, L
    CANADIAN JOURNAL OF PHYSICS, 1970, 48 (16) : 1935 - &
  • [8] New exact solutions of the Dirac equation
    Bose, SK
    Schulze-Halberg, A
    Singh, M
    PHYSICS LETTERS A, 2001, 287 (5-6) : 321 - 324
  • [9] Exact solution of the generalized Kemmer oscillator
    赵子龙
    龙超云
    隆正文
    徐渟
    Chinese Physics B, 2017, 26 (08) : 44 - 49
  • [10] Exact solution of the generalized Kemmer oscillator
    Zhao, Zi-Long
    Long, Chao-Yun
    Long, Zheng-Wen
    Xu, Ting
    CHINESE PHYSICS B, 2017, 26 (08)