Single-molecule optomechanics in "picocavities"

被引:722
作者
Benz, Felix [1 ]
Schmidt, Mikolaj K. [2 ,3 ]
Dreismann, Alexander [1 ]
Chikkaraddy, Rohit [1 ]
Zhang, Yao [2 ,3 ]
Demetriadou, Angela [2 ,3 ,4 ]
Carnegie, Cloudy [1 ]
Ohadi, Hamid [1 ]
de Nijs, Bart [1 ]
Esteban, Ruben [2 ,3 ]
Aizpurua, Javier [2 ,3 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Dept Phys, Cavendish Lab, NanoPhoton Ctr, Cambridge CB3 0HE, England
[2] Univ Basque Country, CSIC, Mat Phys Ctr, Donostia San Sebastian 20018, Spain
[3] Donostia Int Phys Ctr, Donostia San Sebastian 20018, Spain
[4] Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
ENHANCED RAMAN-SCATTERING; SERS; NANOPARTICLES; SPECTROSCOPY; REGIME; GOLD;
D O I
10.1126/science.aah5243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer ("picocavities"), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 10(6) enhancement of optomechanical coupling between the picocavity field and vibrations of individualmolecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.
引用
收藏
页码:726 / 729
页数:4
相关论文
共 22 条
[1]   Tip-enhanced Raman spectroscopy of single RNA strands: Towards a novel direct-sequencing method [J].
Bailo, Elena ;
Deckert, Volker .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (09) :1658-1661
[2]   Atomistic Near-Field Nanoplasmonics: Reaching Atomic-Scale Resolution in Nanooptics [J].
Barbry, M. ;
Koval, P. ;
Marchesin, F. ;
Esteban, R. ;
Borisov, A. G. ;
Aizpurua, J. ;
Sanchez-Portal, D. .
NANO LETTERS, 2015, 15 (05) :3410-3419
[3]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[4]   Properties of the gold-sulphur interface: from self-assembled monolayers to clusters [J].
Buergi, Thomas .
NANOSCALE, 2015, 7 (38) :15553-15567
[5]   Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime [J].
Chen, Xing ;
Moore, Justin E. ;
Zekarias, Meserret ;
Jensen, Lasse .
NATURE COMMUNICATIONS, 2015, 6
[6]   Metallodielectric Hybrid Antennas for Ultrastrong Enhancement of Spontaneous Emission [J].
Chen, Xue-Wen ;
Agio, Mario ;
Sandoghdar, Vahid .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[7]   Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS [J].
Emory, SR ;
Jensen, RA ;
Wenda, T ;
Han, MY ;
Nie, SM .
FARADAY DISCUSSIONS, 2006, 132 :249-259
[8]   Optical Patch Antennas for Single Photon Emission Using Surface Plasmon Resonances [J].
Esteban, R. ;
Teperik, T. V. ;
Greffet, J. J. .
PHYSICAL REVIEW LETTERS, 2010, 104 (02)
[9]   Demonstrating Photoluminescence from Au is Electronic Inelastic Light Scattering of a Plasmonic Metal: The Origin of SERS Backgrounds [J].
Hugall, James T. ;
Baumberg, Jeremy J. .
NANO LETTERS, 2015, 15 (04) :2600-2604
[10]   Single molecule detection using surface-enhanced Raman scattering (SERS) [J].
Kneipp, K ;
Wang, Y ;
Kneipp, H ;
Perelman, LT ;
Itzkan, I ;
Dasari, R ;
Feld, MS .
PHYSICAL REVIEW LETTERS, 1997, 78 (09) :1667-1670