Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction

被引:180
作者
Bae, Sohi [1 ,4 ]
Choi, Yoon Seong [1 ]
Ahn, Sung Soo [1 ]
Chang, Jong Hee [2 ]
Kang, Seok-Gu [2 ]
Kim, Eui Hyun [2 ]
Kim, Se Hoon [3 ]
Lee, Seung-Koo [1 ]
机构
[1] Yonsei Univ, Coll Med, Dept Radiol, Res Inst Radiol Sci, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Yonsei Univ, Coll Med, Dept Neurosurg, 50 Yonsei Ro, Seoul 03722, South Korea
[3] Yonsei Univ, Coll Med, Dept Pathol, 50 Yonsei Ro, Seoul 03722, South Korea
[4] Natl Hlth Insurance Serv Ilsan Hosp, Dept Radiol, Goyang, South Korea
关键词
MGMT PROMOTER METHYLATION; IMAGING PREDICTOR; PATIENT SURVIVAL; PROGNOSTIC VALUE; MULTIFORME; ASTROCYTOMAS; INFORMATION; MUTATIONS; SYSTEM; IMAGES;
D O I
10.1148/radiol.2018180200
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To investigate whether radiomic features at MRI improve survival prediction in patients with glioblastoma multiforme (GBM) when they are integrated with clinical and genetic profiles. Materials and Methods: Data in patients with a diagnosis of GBM between December 2009 and January 2017 (217 patients) were retrospectively reviewed up to May 2017 and allocated to training and test sets (3:1 ratio). Radiomic features (n = 796) were extracted from multiparametric MRI. A random survival forest (RSF) model was trained with the radiomic features along with clinical and genetic profiles (O-6-methylguanine-DNA-methyltransferase promoter methylation and isocitrate dehydrogenase 1 mutation statuses) to predict overall survival (OS) and progression-free survival (PFS). The RSF models were validated on the test set. The incremental values of radiomic features were evaluated by using the integrated area under the receiver operating characteristic curve (iAUC). Results: The 217 patients had a mean age of 57.9 years, and there were 87 female patients (age range, 2281 years) and 130 male patients (age range, 1785 years). The median OS and PFS of patients were 352 days (range, 201809 days) and 264 days (range, 211809 days), respectively. The RSF radiomics models were successfully validated on the test set (iAUC, 0.652 [95% confidence interval {CI}, 0.524, 0.769] and 0.590 [95% CI: 0.502, 0.689] for OS and PFS, respectively). The addition of a radiomics model to clinical and genetic profiles improved survival prediction when compared with models containing clinical and genetic profiles alone (P = .04 and .03 for OS and PFS, respectively). Conclusion: Radiomic MRI phenotyping can improve survival prediction when integrated with clinical and genetic profiles and thus has potential as a practical imaging biomarker. (C) RSNA, 2018
引用
收藏
页码:797 / 806
页数:10
相关论文
共 36 条
[1]   Glioblastoma Multiforme Regional Genetic and Cellular Expression Patterns: Influence on Anatomic and Physiologic MR Imaging [J].
Barajas, Ramon F., Jr. ;
Hodgson, J. Graeme ;
Chang, Jamie S. ;
Vandenberg, Scott R. ;
Yeh, Ru-Fang ;
Parsa, Andrew T. ;
McDermott, Michael W. ;
Berger, Mitchel S. ;
Dillon, William P. ;
Cha, Soonmee .
RADIOLOGY, 2010, 254 (02) :564-576
[2]   Relationship between Tumor Enhancement, Edema, IDH1 Mutational Status, MGMT Promoter Methylation, and Survival in Glioblastoma [J].
Carrillo, J. A. ;
Lai, A. ;
Nghiemphu, P. L. ;
Kim, H. J. ;
Phillips, H. S. ;
Kharbanda, S. ;
Moftakhar, P. ;
Lalaezari, S. ;
Yong, W. ;
Ellingson, B. M. ;
Cloughesy, T. F. ;
Pope, W. B. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2012, 33 (07) :1349-1355
[3]   Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab [J].
Chang, Ken ;
Zhang, Biqi ;
Guo, Xiaotao ;
Zong, Min ;
Rahman, Rifaquat ;
Sanchez, David ;
Winder, Nicolette ;
Reardon, David A. ;
Zhao, Binsheng ;
Wen, Patrick Y. ;
Huang, Raymond Y. .
NEURO-ONCOLOGY, 2016, 18 (12) :1680-1687
[4]   A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies [J].
Chang, P. D. ;
Malone, H. R. ;
Bowden, S. G. ;
Chow, D. S. ;
Gill, B. J. A. ;
Ung, T. H. ;
Samanamud, J. ;
Englander, Z. K. ;
Sonabend, A. M. ;
Sheth, S. A. ;
McKhann, G. M., II ;
Sisti, M. B. ;
Schwartz, L. H. ;
Lignelli, A. ;
Grinband, J. ;
Bruce, J. N. ;
Canoll, P. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (05) :890-898
[5]   Pathway hunting by random survival forests [J].
Chen, Xi ;
Ishwaran, Hemant .
BIOINFORMATICS, 2013, 29 (01) :99-105
[6]   The Initial Area Under the Curve Derived from Dynamic Contrast-Enhanced MRI Improves Prognosis Prediction in Glioblastoma with Unmethylated MGMT Promoter [J].
Choi, Y. S. ;
Ahn, S. S. ;
Lee, H. -J. ;
Chang, J. H. ;
Kang, S. -G. ;
Kim, E. H. ;
Kim, S. H. ;
Lee, S. -K. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (08) :1528-1535
[7]   The Added Prognostic Value of Preoperative Dynamic Contrast-Enhanced MRI Histogram Analysis in Patients with Glioblastoma: Analysis of Overall and Progression-Free Survival [J].
Choi, Y. S. ;
Kim, D. W. ;
Lee, S. -K. ;
Chang, J. H. ;
Kang, S. -G. ;
Kim, E. H. ;
Kim, S. H. ;
Rim, T. H. ;
Ahn, S. S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (12) :2235-2241
[8]   Incremental Prognostic Value of ADC Histogram Analysis over MGMT Promoter Methylation Status in Patients with Glioblastoma [J].
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Kim, Dong Wook ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Rim, Tyler Hyungtaek ;
Lee, Seung-Koo .
RADIOLOGY, 2016, 281 (01) :175-184
[9]   Prognostic Value of Dynamic Susceptibility Contrast-Enhanced and Diffusion-Weighted MR Imaging in Patients with Glioblastomas [J].
Coban, G. ;
Mohan, S. ;
Kural, F. ;
Wang, S. ;
O'Rourke, D. M. ;
Poptani, H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2015, 36 (07) :1247-1252
[10]   Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: One step forward, and one step back? [J].
Combs, Stephanie E. ;
Rieken, Stefan ;
Wick, Wolfgang ;
Abdollahi, Amir ;
von Deimling, Andreas ;
Debus, Juergen ;
Hartmann, Christian .
RADIATION ONCOLOGY, 2011, 6