Stabilization of 5G Telecom Converter-Based Deep Type-3 Fuzzy Machine Learning Control for Telecom Applications

被引:27
作者
Gheisarnejad, Meysam [1 ]
Mohammadzadeh, Ardashir [2 ]
Farsizadeh, Hamed [1 ]
Khooban, Mohammad-Hassan [1 ]
机构
[1] Aarhus Univ, Dept Elect & Comp Engn, DK-8200 Aarhus, Denmark
[2] Univ Bonab, Elect Engn Dept, Bonab 5551761167, Iran
关键词
Telecommunications; Fuzzy logic; Power system stability; 5G mobile communication; Circuits and systems; Reinforcement learning; Robustness; 5G-telecom power system (5G-TPS); interval fuzzy type-3 fuzzy logic system (IT3-FLS); deep reinforcement learning (DRL); full-bridge (FB) converter;
D O I
10.1109/TCSII.2021.3102282
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For the 5G base transceiver stations (BTSs), the effective stabilization of full-bridge (FB) converters is necessary to supply the connected loads without any interruption. The stability challenges of such technologies are more intensified when the 5G BTS supplies constant power loads (CPL) with negative impedance instabilities. To meet this need, this brief presents an adaptive interval type-3 fuzzy logic system (IT3-FLS) employing deep reinforcement learning (DRL) for the efficient voltage stabilization of 5G-telecom power system (5G-TPS) supplying CPL. The Hardware-in-the-Loop (HiL) examinations are accomplished using an OPAL-RT platform to test the usefulness of the adaptive IT3-FLS from a systematic perspective.
引用
收藏
页码:544 / 548
页数:5
相关论文
共 22 条
[1]  
Aghdam M. G. Hosseini, 2009, 2009 International Conference on Power Electronics and Drive Systems (PEDS 2009), P1035, DOI 10.1109/PEDS.2009.5385745
[2]   A Review of Hybrid Topologies Combining Line-Commutated and Cascaded Full-Bridge Converters [J].
Bakas, Panagiotis ;
Harnefors, Lennart ;
Norrga, Staffan ;
Nami, Alireza ;
Ilves, Kalle ;
Dijkhuizen, Frans ;
Nee, Hans-Peter .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (10) :7435-7448
[3]   Adaptive Fuzzy Event-Triggered Control for Single-Link Flexible-Joint Robots With Actuator Failures [J].
Diao, Shuzhen ;
Sun, Wei ;
Su, Shun-Feng ;
Xia, Jianwei .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (08) :7231-7241
[4]  
Gheisarnejad Meysam, 2019, 2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI). Proceedings, P302, DOI 10.1109/RTSI.2019.8895596
[5]   A New Adaptive Type-II Fuzzy-Based Deep Reinforcement Learning Control: Fuel Cell Air-Feed Sensors Control [J].
Gheisarnejad, Meysam ;
Boudjadar, Jalil ;
Khooban, Mohammad Hassan .
IEEE SENSORS JOURNAL, 2019, 19 (20) :9081-9089
[6]   Human guided cooperative robotic agents in smart home using beetle antennae search [J].
Khan, Ameer Tamoor ;
Li, Shuai ;
Cao, Xinwei .
SCIENCE CHINA-INFORMATION SCIENCES, 2022, 65 (02)
[7]   Control framework for cooperative robots in smart home using bio-inspired neural network [J].
Khan, Ameer Tamoor ;
Li, Shuai ;
Cao, Xinwei .
MEASUREMENT, 2021, 167
[8]   A Novel Stochastic Predictive Stabilizer for DC Microgrids Feeding CPLs [J].
Kowsari, Elham ;
Zarei, Jafar ;
Razavi-Far, Roozbeh ;
Saif, Mehrdad ;
Dragicevic, Tomislav ;
Khooban, Mohammad-Hassan .
IEEE JOURNAL OF EMERGING AND SELECTED TOPICS IN POWER ELECTRONICS, 2021, 9 (02) :1222-1232
[9]   Providing a guaranteed power for the BTS in telecom tower based on improved balanced owl search algorithm [J].
Li, Daming ;
Deng, Lianbing ;
Su, Qinglang ;
Song, Yonghua .
ENERGY REPORTS, 2020, 6 :297-307
[10]   Saturated PI Control for Nonlinear System With Provable Convergence: An Optimization Perspective [J].
Li, Zhan ;
Li, Shuai .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (02) :742-746