Crystal structure representations for machine learning models of formation energies

被引:351
|
作者
Faber, Felix [1 ,2 ,3 ]
Lindmaa, Alexander [4 ]
von Lilienfeld, O. Anatole [1 ,2 ,3 ,5 ,6 ]
Armiento, Rickard [4 ]
机构
[1] Univ Basel, Dept Chem, CH-4003 Basel, Switzerland
[2] Univ Basel, Inst Phys Chem, CH-4003 Basel, Switzerland
[3] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, CH-4003 Basel, Switzerland
[4] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[5] Argonne Leadership Comp Facil, Lemont, IL 60439 USA
[6] Argonne Natl Lab, Lemont, IL 60439 USA
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
machine learning; formation energies; representations; crystal structure; periodic systems; CHEMICAL UNIVERSE; VIRTUAL EXPLORATION;
D O I
10.1002/qua.24917
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1094 / 1101
页数:8
相关论文
共 50 条
  • [21] Tree based machine learning framework for predicting ground state energies of molecules
    Himmetoglu, Burak
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (13)
  • [22] Protein structure prediction (RMSD ≤ 5 Å) using machine learning models
    Pathak, Yadunath
    Rana, Prashant Singh
    Singh, P. K.
    Saraswat, Mukesh
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (01) : 71 - 85
  • [23] Machine-learning correction to density-functional crystal structure optimization
    Robert Hussein
    Jonathan Schmidt
    Tomás Barros
    Miguel A. L. Marques
    Silvana Botti
    MRS Bulletin, 2022, 47 : 765 - 771
  • [24] Modeling of molecular atomization energies using machine learning
    Matthias Rupp
    Alexandre Tkatchenko
    Klaus-Robert Müller
    O Anatole von Lilienfeld
    Journal of Cheminformatics, 4 (Suppl 1)
  • [25] Machine learning in nuclear physics at low and intermediate energies
    He, Wanbing
    Li, Qingfeng
    Ma, Yugang
    Niu, Zhongming
    Pei, Junchen
    Zhang, Yingxun
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (08)
  • [26] Machine Learning Enabling the Prediction of Activation Energies of SPAAC
    Josephson, Jason D.
    Pezacki, John Paul
    Nakajima, Masaya
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2025, 38 (02)
  • [27] Machine learning in nuclear physics at low and intermediate energies
    Wanbing He
    Qingfeng Li
    Yugang Ma
    Zhongming Niu
    Junchen Pei
    Yingxun Zhang
    Science China Physics, Mechanics & Astronomy, 2023, 66
  • [28] Anonymizing Machine Learning Models
    Goldsteen, Abigail
    Ezov, Gilad
    Shmelkin, Ron
    Moffie, Micha
    Farkash, Ariel
    DATA PRIVACY MANAGEMENT, CRYPTOCURRENCIES AND BLOCKCHAIN TECHNOLOGY, ESORICS 2021, 2022, 13140 : 121 - 136
  • [29] Machine Learning on Experimental Crystal Structures to parametrize Models of the Gibbs Energy in Computational Crystallography
    Kuleshova, Liudmila N.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C711 - C711
  • [30] Bilinear Models for Machine Learning
    Doghri, Tayssir
    Szczecinski, Leszek
    Benesty, Jacob
    Mitiche, Amar
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 687 - 698