Crystal structure representations for machine learning models of formation energies

被引:351
|
作者
Faber, Felix [1 ,2 ,3 ]
Lindmaa, Alexander [4 ]
von Lilienfeld, O. Anatole [1 ,2 ,3 ,5 ,6 ]
Armiento, Rickard [4 ]
机构
[1] Univ Basel, Dept Chem, CH-4003 Basel, Switzerland
[2] Univ Basel, Inst Phys Chem, CH-4003 Basel, Switzerland
[3] Univ Basel, Natl Ctr Computat Design & Discovery Novel Mat, CH-4003 Basel, Switzerland
[4] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
[5] Argonne Leadership Comp Facil, Lemont, IL 60439 USA
[6] Argonne Natl Lab, Lemont, IL 60439 USA
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
machine learning; formation energies; representations; crystal structure; periodic systems; CHEMICAL UNIVERSE; VIRTUAL EXPLORATION;
D O I
10.1002/qua.24917
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations. (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:1094 / 1101
页数:8
相关论文
共 50 条
  • [1] Terramechanics models augmented by machine learning representations
    Karpman, Eric
    Kovecses, Jozsef
    Teichmann, Marek
    JOURNAL OF TERRAMECHANICS, 2023, 107 : 75 - 89
  • [2] Machine learning-based prediction models for formation energies of interstitial atoms in HCP crystals
    You, Daegun
    Ganorkar, Shraddha
    Kim, Sooran
    Kang, Keonwook
    Shin, Won-Yong
    Lee, Dongwoo
    SCRIPTA MATERIALIA, 2020, 183 : 1 - 5
  • [3] Metadata Representations for Queryable Repositories of Machine Learning Models
    Li, Ziyu
    Kant, Henk
    Hai, Rihan
    Katsifodimos, Asterios
    Brambilla, Marco
    Bozzon, Alessandro
    IEEE ACCESS, 2023, 11 : 125616 - 125630
  • [4] Representations of Materials for Machine Learning
    Damewood, James
    Karaguesian, Jessica
    Lunger, Jaclyn R.
    Tan, Aik Rui
    Xie, Mingrou
    Peng, Jiayu
    Gomez-Bombarelli, Rafael
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2023, 53 : 399 - 426
  • [5] Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method
    Wang, Yuxuan
    Li, Xiaolin
    Li, Xiangyan
    Zhang, Yuxiang
    Zhang, Yange
    Xu, Yichun
    Lei, Yawei
    Liu, C. S.
    Wu, Xuebang
    JOURNAL OF NUCLEAR MATERIALS, 2022, 559
  • [6] Molecular representations for machine learning applications in chemistry
    Raghunathan, Shampa
    Priyakumar, U. Deva
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2022, 122 (07)
  • [7] Assessing conformer energies using electronic structure and machine learning methods
    Folmsbee, Dakota
    Hutchison, Geoffrey
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (01)
  • [8] Review on Machine Learning Accelerated Crystal Structure Prediction
    Luo X.
    Wang Z.
    Gao P.
    Zhang W.
    Lv J.
    Wang Y.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2023, 51 (02): : 552 - 560
  • [9] Machine learning of ab-initio energy landscapes for crystal structure predictions
    Honrao, Shreyas
    Anthonio, Bryan E.
    Ramanathan, Rohit
    Gabriel, Joshua J.
    Hennig, Richard G.
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 158 : 414 - 419
  • [10] Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia
    Batra, Rohit
    Pilania, Ghanshyam
    Uberuaga, Blas P.
    Ramprasad, Rampi
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) : 24906 - 24918