The Harnack Estimate for a Nonlinear Parabolic Equation under the Ricci Flow

被引:9
作者
Hou, Song Bo [1 ]
机构
[1] China Agr Univ, Dept Appl Math, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Closed manifold; Ricci flow; nonlinear parabolic equation; Harnack estimate; RIEMANNIAN-MANIFOLDS; CURVATURE;
D O I
10.1007/s10114-011-0074-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (M, g(t)), 0 <= t <= T, be an n-dimensional closed manifold with nonnegative Ricci curvature, |Rc| <= C/t for some constant C > 0 and g(t) evolving by the Ricci flow partial derivative g(ij)/partial derivative t = -2R(ij). In this paper, we derive a differential Harnack estimate for positive solutions to parabolic equations of the type u(t) = Delta u - aulogu - bu on M x (0, T], where a > 0 and b is an element of R.
引用
收藏
页码:1935 / 1940
页数:6
相关论文
共 15 条
[1]   Differential Harnack estimates for backward heat equations with potentials under the Ricci flow [J].
Cao, Xiaodong .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) :1024-1038
[2]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[3]   ON HARNACK INEQUALITY AND ENTROPY FOR THE GAUSSIAN CURVATURE FLOW [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (04) :469-483
[4]   THE YAMABE FLOW ON LOCALLY CONFORMALLY FLAT MANIFOLDS WITH POSITIVE RICCI CURVATURE [J].
CHOW, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (08) :1003-1014
[5]   THE RICCI FLOW ON THE 2-SPHERE [J].
CHOW, B .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (02) :325-334
[6]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225
[7]  
HAMILTON RS, 1988, MATH GEN RELATIVITY, P237
[8]  
HSU SY, ARXIV08064004V1MATHD
[9]  
LI JY, 1991, J FUNCT ANAL, V100, P233
[10]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201