Model-Based Efficacy and Toxicity Comparisons of Moxifloxacin for Multidrug-Resistant Tuberculosis

被引:8
|
作者
Yun, Hwi-Yeol [1 ]
Chang, Vincent [2 ]
Radtke, Kendra K. [2 ]
Wang, Qianwen [2 ]
Strydom, Natasha [2 ]
Chang, Min Jung [3 ,4 ,5 ,6 ]
Savic, Radojka M. [2 ]
机构
[1] Chungnam Natl Univ, Coll Pharm, Dept Pharm, Daejeon, South Korea
[2] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[3] Yonsei Univ, Dept Pharm, Incheon, South Korea
[4] Yonsei Univ, Yonsei Inst Pharmaceut Sci, Incheon, South Korea
[5] Yonsei Univ, Dept Pharmaceut Med & Regulatory Sci, Incheon, South Korea
[6] Yonsei Univ, Grad Program Ind Pharmaceut Sci, Incheon, South Korea
来源
OPEN FORUM INFECTIOUS DISEASES | 2022年 / 9卷 / 03期
关键词
lung lesion distribution model; moxifloxacin; multidrug resistance tuberculosis (MDR-TB); population pharmacokinetics; QT prolongation model; BACTERIAL KILLING RATES; AUIC BREAK POINTS; POPULATION PHARMACOKINETICS; MYCOBACTERIUM-TUBERCULOSIS; IN-VITRO; DRUG; SAFETY; OFLOXACIN; QUINOLONE; PROFILE;
D O I
10.1093/ofid/ofab660
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background Moxifloxacin (MOX) is used as a first-choice drug to treat multidrug-resistant tuberculosis (MDR-TB); however, evidence-based dosing optimization should be strengthened by integrative analysis. The primary goal of this study was to evaluate MOX efficacy and toxicity using integrative model-based approaches in MDR-TB patients. Methods In total, 113 MDR-TB patients from 5 different clinical trials were analyzed for the development of a population pharmacokinetics (PK) model. A final population PK model was merged with a previously developed lung-lesion distribution and QT prolongation model. Monte Carlo simulation was used to calculate the probability target attainment value based on concentration. An area under the concentration-time curve (AUC)-based target was identified as the minimum inhibitory concentration (MIC) of MOX isolated from MDR-TB patients. Results The presence of human immunodeficiency virus (HIV) increased clearance by 32.7% and decreased the AUC by 27.4%, compared with HIV-negative MDR-TB patients. A daily dose of 800 mg or a 400-mg, twice-daily dose of MOX is expected to be effective in MDR-TB patients with an MIC of <= 0.25 mu g/mL, regardless of PK differences resulting from the presence of HIV. The effect of MOX in HIV-positive MDR-TB patients tended to be decreased dramatically from 0.5 mu g/mL, in contrast to the findings in HIV-negative patients. A regimen of twice-daily doses of 400 mg should be considered safer than an 800-mg once-daily dosing regimen, because of the narrow fluctuation of concentrations. Conclusions Our results suggest that a 400-mg, twice-daily dose of MOX is an optimal dosing regimen for MDR-TB patients because it provides superior efficacy and safety. 400mg, twice-daily dose of MOX could be suggested as an optimal dose for MDR-TB patients evidenced by population PK-lung lesion distribution-QT prolongation model
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Slow Elimination of Multidrug-Resistant Tuberculosis
    Dye, Christopher
    Williams, Brian G.
    SCIENCE TRANSLATIONAL MEDICINE, 2009, 1 (03)
  • [32] Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis
    Lange, C.
    Alghamdi, W. A.
    Al-Shaer, M. H.
    Brighenti, S.
    Diacon, A. H.
    DiNardo, A. R.
    Grobbel, H. P.
    Groschel, M. I.
    von Groote-Bidlingmaier, F.
    Hauptmann, M.
    Heyckendorf, J.
    Kohler, N.
    Kohl, T. A.
    Merker, M.
    Niemann, S.
    Peloquin, C. A.
    Reimann, M.
    Schaible, U. E.
    Schaub, D.
    Schleusener, V.
    Thye, T.
    Schon, T.
    JOURNAL OF INTERNAL MEDICINE, 2018, 284 (02) : 163 - 188
  • [33] Levofloxacin Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial Intelligence in the Treatment of Multidrug-resistant Tuberculosis
    Deshpande, Devyani
    Pasipanodya, Jotam G.
    Mpagama, Stellah G.
    Bendet, Paula
    Srivastava, Shashikant
    Koeuth, Thearith
    Lee, Pooi S.
    Bhavnani, Sujata M.
    Ambrose, Paul G.
    Thwaites, Guy
    Heysell, Scott K.
    Gumbo, Tawanda
    CLINICAL INFECTIOUS DISEASES, 2018, 67 : S293 - S302
  • [34] Gatifloxacin for short, effective treatment of multidrug-resistant tuberculosis
    Chiang, C-Y.
    Van Deun, A.
    Riederi, H. L.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2016, 20 (09) : 1143 - 1147
  • [35] The efficacy of rifabutin for rifabutin-susceptible, multidrug-resistant tuberculosis
    Jo, Kyung-Wook
    Ji, Wonjun
    Hong, Yoonki
    Lee, Sang-Do
    Kim, Woo Sung
    Kim, Dong Soon
    Shim, Tae Sun
    RESPIRATORY MEDICINE, 2013, 107 (02) : 292 - 297
  • [36] An update on multidrug-resistant tuberculosis
    Park, Mirae
    Satta, Giovanni
    Kon, Onn Min
    CLINICAL MEDICINE, 2019, 19 (02) : 135 - 139
  • [37] Quinolones and multidrug-resistant tuberculosis
    Maranetra, KN
    CHEMOTHERAPY, 1999, 45 : 12 - 18
  • [38] MULTIDRUG-RESISTANT TUBERCULOSIS IN PREGNANCY
    Dhingra, V. K.
    Mittal, A.
    Rajpal, S.
    Arora, V. K.
    JCPSP-JOURNAL OF THE COLLEGE OF PHYSICIANS AND SURGEONS PAKISTAN, 2007, 17 (10): : 637 - 639
  • [39] Management of Multidrug-Resistant Tuberculosis
    Daley, Charles L.
    Caminero, Jose A.
    SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 39 (03) : 310 - 324
  • [40] QTc prolongation and treatment of multidrug-resistant tuberculosis
    Harausz, E.
    Cox, H.
    Rich, M.
    Mitnick, C. D.
    Zimetbaum, P.
    Furin, J.
    INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2015, 19 (04) : 385 - 391