Altered sensorimotor integration with cervical spine manipulation

被引:77
作者
Taylor, Heidi Haavik [1 ,3 ]
Murphy, Bernadette [2 ,3 ]
机构
[1] New Zealand Coll Chiropract, Auckland, New Zealand
[2] Univ Western Ontario, Inst Technol, Oshawa, ON L1H 7K4, Canada
[3] Univ Auckland, Dept Sport & Exercise Sci, Human Neurophysiol & Rehabilitat Lab, Auckland 1, New Zealand
关键词
manipulation; spinal; neuronal plasticity; transcranial magnetic stimulation; neural inhibition; central nervous system; chiropractic;
D O I
10.1016/j.jmpt.2007.12.011
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: This study investigates changes in the intrinsic inhibitory and facilitatory interactions within the sensorimotor cortex subsequent to a single session of cervical spine manipulation using single- and paired-pulse transcranial magnetic stimulation protocols. Method: Twelve subjects with a history of reoccurring neck pain participated in this study. Short interval intracortical inhibition, short interval intracortical facilitation (SICF), motor evoked potentials, and cortical silent periods (CSPs) were recorded from the abductor pollicis brevis and the extensor indices proprios muscles of the dominant limb after single- and paired-pulse transcranial magnetic stimulation of the contralateral motor cortex. The experimental measures were recorded before and after spinal manipulation of dysfunctional cervical joints, and on a different day after passive head movement. To assess spinal excitability, F wave persistence and amplitudes were recorded after median nerve stimulation at the wrist. Results: After cervical manipulations, there was an increase in SICF, a decrease in short interval intracortical inhibition, and a shortening of the CSP in abductor pollicis brevis. The opposite effect was observed in extensor indices proprios, with a decrease in SICF and a lengthening of the CSP. No motor evoked potentials or F wave response alterations were observed, and no changes were observed after the control condition. Conclusion: Spinal manipulation of dysfunctional cervical joints may alter specific central corticomotor facilitatory and inhibitory neural processing and cortical motor control of 2 upper limb muscles in a muscle-specific manner. This suggests that spinal manipulation may alter sensorimotor integration. These findings may help elucidate mechanisms responsible for the effective relief of pain and restoration of functional ability documented after spinal manipulation.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 88 条
[1]   Trunk muscle onset detection technique for EMG signals with ECG artefact [J].
Allison, GT .
JOURNAL OF ELECTROMYOGRAPHY AND KINESIOLOGY, 2003, 13 (03) :209-216
[2]  
Alund M, 1993, J Vestib Res, V3, P383
[3]  
[Anonymous], 2007, Chiropractic Journal of Australia
[4]   Doppler studies evaluating the effect of a physical therapy screening protocol on vertebral artery blood flow [J].
Arnold, C ;
Bourassa, R ;
Langer, T ;
Stoneham, G .
MANUAL THERAPY, 2004, 9 (01) :13-21
[5]  
Bolton P. S., 1996, Society for Neuroscience Abstracts, V22, P1802
[6]   An in vivo method for studying afferent fibre activity from cervical paravertebral tissue during vertebral motion in anaesthetised cats [J].
Bolton, PS ;
Holland, CT .
JOURNAL OF NEUROSCIENCE METHODS, 1998, 85 (02) :211-218
[7]   Mechanisms influencing stimulus-response properties of the human corticospinal system [J].
Boroojerdi, B ;
Battaglia, F ;
Muellbacher, W ;
Cohen, LG .
CLINICAL NEUROPHYSIOLOGY, 2001, 112 (05) :931-937
[8]  
BRANSTROM H, 2001, ADV PHYSIOTHER, V3, P120, DOI [10.1080/140381901750475366, DOI 10.1080/140381901750475366]
[9]  
BRASILNETO JP, 1995, ACTA NEUROL SCAND, V92, P383
[10]   RAPID MODULATION OF HUMAN CORTICAL MOTOR OUTPUTS FOLLOWING ISCHEMIC NERVE BLOCK [J].
BRASILNETO, JP ;
VALLSSOLE, J ;
PASCUALLEONE, A ;
CAMMAROTA, A ;
AMASSIAN, VE ;
CRACCO, R ;
MACCABEE, P ;
CRACCO, J ;
HALLETT, M ;
COHEN, LG .
BRAIN, 1993, 116 :511-525