Composite STEEK membranes for medium temperature polymer electrolyte fuel cells

被引:49
|
作者
Carbone, A. [1 ]
Pedicini, R. [1 ]
Sacca, A. [1 ]
Gatto, I. [1 ]
Passalacqua, E. [1 ]
机构
[1] Adv Technol Energy Inst N Giordano, CNR ITAE, Messina, Italy
关键词
composite S-PEEK membranes; functionalised silica; proton conductivity PEFC;
D O I
10.1016/j.jpowsour.2007.10.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sulphonated-PEEK polymers with two different sulphonation degrees (DS) were obtained by varying the sulphonation parameters. Ionomeric membranes were prepared as a reference. Composite membranes were obtained by mixing different percentage of 3-aminopropyl functionalised silica to the polymers dissolved in DMAc. The resulting membranes were characterised in terms of water uptake, IEC and proton conductivity in different conditions of temperature and relative humidity. The introduction of amino-functionalised silica in the lowest DS polymer slightly increases the water uptake, because it retains the water and in this case the hydrophilic property of the material is predominant. In the highest DS polymer the presence of SiO-NH2 decreases the water uptake and swelling, probably due to a major interaction between the amino groups of silica and the sulphonic groups of polymer. The proton conductivity of the highly sulphonated polymer does not change even if the swelling decreases, while in the poorly sulphonated polymer a slight increases of water retention increases the conductivity. A composite membrane was tested in PEFC at 120 degrees C reaching a maximum power density of 246 MW cm(-2). (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:661 / 666
页数:6
相关论文
共 50 条
  • [1] Sulphonated polysulphone membranes for medium temperature in polymer electrolyte fuel cells (PEFC)
    Pedicini, R.
    Carbone, A.
    Sacca, A.
    Gatto, I.
    Di Marco, G.
    Passalacqua, E.
    POLYMER TESTING, 2008, 27 (02) : 248 - 259
  • [2] Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells
    Fei, Mingming
    Lin, Ruizhi
    Deng, Yuming
    Xian, Hongxi
    Bian, Renji
    Zhang, Xiaole
    Cheng, Jigui
    Xu, Chenxi
    Cai, Dongyu
    NANOTECHNOLOGY, 2018, 29 (03)
  • [3] Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells
    Jiang, Gao-peng
    Zhang, Jing
    Qiao, Jin-li
    Jiang, Yong-ming
    Zarrin, Hadis
    Chen, Zhongwei
    Hong, Feng
    JOURNAL OF POWER SOURCES, 2015, 273 : 697 - 706
  • [4] Polybenzimidazole and ionic liquid composite membranes for high temperature polymer electrolyte fuel cells
    Niu, Bingbing
    Luo, Shijing
    Lu, Chunling
    Yi, Wendi
    Liang, Jiantao
    Guo, Shuang
    Wang, Deng
    Zeng, Feng
    Duan, Shichun
    Liu, Yang
    Zhang, Lihua
    Xu, Baomin
    SOLID STATE IONICS, 2021, 361
  • [5] New polymer electrolyte membranes for low temperature fuel cells
    Ennari, J
    Hietala, S
    Paronen, M
    Sundholm, F
    Walsby, N
    Karjalainen, M
    Serimaa, R
    Lehtinen, T
    Sundholm, G
    MACROMOLECULAR SYMPOSIA, 1999, 146 : 41 - 45
  • [6] Polymer electrolyte membranes for fuel cells
    Zhang Hongwei
    Zhou Zhentao
    PROGRESS IN CHEMISTRY, 2008, 20 (04) : 602 - 619
  • [7] Membranes for polymer electrolyte fuel cells
    Glüsen, A
    Stolten, D
    CHEMIE INGENIEUR TECHNIK, 2003, 75 (11) : 1591 - 1597
  • [8] Polymer electrolyte membranes for fuel cells
    Lee, JS
    Quan, ND
    Hwang, JM
    Lee, SD
    Kim, H
    Lee, H
    Kim, HS
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2006, 12 (02) : 175 - 183
  • [9] SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells
    Sambandam, Satheesh
    Ramani, Vijay
    JOURNAL OF POWER SOURCES, 2007, 170 (02) : 259 - 267
  • [10] Synthesis and Properties of Composite Membranes for Polymer Electrolyte Membrane Fuel Cells
    Chesnokova, Alexandra N.
    Lebedeva, Oksana V.
    Pozhidaev, Yury N.
    Ivanov, Nikolay A.
    Rzhechitskii, Alexander E.
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING III, PTS 1 AND 2, 2014, 884-885 : 251 - 256