Some inequalities for sth derivative of polynomials

被引:0
作者
Zhao, Xingjun [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Integral inequality; sth Derivative; Zeros; Polynomials;
D O I
10.1007/s41478-021-00356-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(z) be a polynomial of degree n which have no zeros in vertical bar z vertical bar<k,k >= 1. Then it was proved by Govil (J Approx Theory 66:29-35, 1991), for 1 <= s<n, then max(|z|=1)|P-(s)(z)|<= n(n-1) center dot center dot center dot/1+k(s)(max(|z|=1)|P(z)|-min(|z|=k|)P(z)|). In this paper, we shall present an generalization of this result and an L-gamma analogue of our result, which improve some previous results.
引用
收藏
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1947, NEDERL AKAD WETENSCH
[2]  
ARESTOV VV, 1981, MATH USSR IZV+, V45, P1
[3]   New Lq inequalities for polynomials [J].
Aziz, A ;
Rather, NA .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (02) :177-191
[4]   Lp inequalities for polynomials with restricted zeros [J].
Aziz, A ;
Shah, WM .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1998, 108 (01) :63-68
[5]   Some Zygmund type Lq inequalities for polynomials [J].
Aziz, A ;
Rather, NA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :14-29
[6]  
Bustamante J., 2020, Constr. Math. Anal., V3, P53
[7]  
Gal SG., 2019, Constr. Math. Anal, V2, P15
[8]   SOME INEQUALITIES FOR DERIVATIVES OF POLYNOMIALS [J].
GOVIL, NK .
JOURNAL OF APPROXIMATION THEORY, 1991, 66 (01) :29-35
[9]   FUNCTIONS OF EXPONENTIAL TYPE NOT VANISHING IN A HALF-PLANE AND RELATED POLYNOMIALS [J].
GOVIL, NK ;
RAHMAN, QI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 137 (MAR) :501-&
[10]  
Lax P.D., 1944, Bull. Amer. Math. Soc., V50, P509