Forecasting high-frequency spatio-temporal wind power with dimensionally reduced echo state networks

被引:14
作者
Huang, Huang [1 ]
Castruccio, Stefano [2 ]
Genton, Marc G. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Stat Program, Thuwal 239556900, Saudi Arabia
[2] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
关键词
echo state network; Gaussian random field; machine learning; reservoir computing; space-time model; MODEL; FRAMEWORK; RESOURCE;
D O I
10.1111/rssc.12540
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Fast and accurate hourly forecasts of wind speed and power are crucial in quantifying and planning the energy budget in the electric grid. Modelling wind at a high resolution brings forth considerable challenges given its turbulent and highly nonlinear dynamics. In developing countries, where wind farms over a large domain are currently under construction or consideration, this is even more challenging given the necessity of modelling wind over space as well. In this work, we propose a machine learning approach to model the nonlinear hourly wind dynamics in Saudi Arabia with a domain-specific choice of knots to reduce spatial dimensionality. Our results show that for locations highlighted as wind abundant by a previous work, our approach results in an 11% improvement in the 2-h-ahead forecasted power against operational standards in the wind energy sector, yielding a saving of nearly one million US dollars over a year under current market prices in Saudi Arabia.
引用
收藏
页码:449 / 466
页数:18
相关论文
共 47 条
[1]  
[Anonymous], 2009, ARTIF INTELL
[2]   A North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh [J].
Benjamin, Stanley G. ;
Weygandt, Stephen S. ;
Brown, John M. ;
Hu, Ming ;
Alexander, Curtis R. ;
Smirnova, Tatiana G. ;
Olson, Joseph B. ;
James, Eric P. ;
Dowell, David C. ;
Grell, Georg A. ;
Lin, Haidao ;
Peckham, Steven E. ;
Smith, Tracy Lorraine ;
Moninger, William R. ;
Kenyon, Jaymes S. ;
Manikin, Geoffrey S. .
MONTHLY WEATHER REVIEW, 2016, 144 (04) :1669-1694
[3]  
Bonas M., 2021, ARXIV PREPRINT ARXIV
[4]  
BP, 2020, Statistical Review of World Energy
[5]   Assessing the risk of disruption of wind turbine operations in Saudi Arabia using Bayesian spatial extremes [J].
Chen, Wanfang ;
Castruccio, Stefano ;
Genton, Marc G. .
EXTREMES, 2021, 24 (02) :267-292
[6]   Current and Future Estimates of Wind Energy Potential Over Saudi Arabia [J].
Chen, Wanfang ;
Castruccio, Stefano ;
Genton, Marc G. ;
Crippa, Paola .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2018, 123 (12) :6443-6459
[7]   Fixed rank kriging for very large spatial data sets [J].
Cressie, Noel ;
Johannesson, Gardar .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :209-226
[8]   A temporal model for vertical extrapolation of wind speed and wind energy assessment [J].
Crippa, Paola ;
Alifa, Mariana ;
Bolster, Diogo ;
Genton, Marc G. ;
Castruccio, Stefano .
APPLIED ENERGY, 2021, 301
[9]  
DOYA K, 1992, 1992 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, P2777, DOI 10.1109/ISCAS.1992.230622
[10]  
Efron B, 2016, INST MATH STAT MG, P1, DOI 10.1017/CBO9781316576533