A NEW PARAMETRIC KERNEL FUNCTION YIELDING THE BEST KNOWN ITERATION BOUNDS OF INTERIOR-POINT METHODS FOR THE CARTESIAN P*(k)-SCLCP

被引:0
作者
Cai, X. Z. [1 ]
Li, L. [1 ]
El Ghami, M. [2 ]
Steihaug, T. [3 ]
Wang, G. Q. [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[2] Nord Univ Nesna, Fac Educ & Arts, Math Sect, N-8700 Nesna, Norway
[3] Univ Bergen, Dept Informat, Box 7803, N-5020 Bergen, Norway
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
interior-point methods; linear complementarity problem; Cartesian P-*(k)-property; Euclidean Jordan algebras; large-update method; small-update method; polynomial complexity; LINEAR COMPLEMENTARITY-PROBLEM; TRIGONOMETRIC BARRIER TERM; SYMMETRIC CONES; SEMIDEFINITE OPTIMIZATION; JORDAN ALGEBRAS; ALGORITHMS; CONVERGENCE;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In. this paper, we introduce a new parametric kernel function with trigonometric barrier term, which yields a class of large- and small-update interior-point methods for the Cartesian P-*(n)-LCP over symmetric cones. By using Euclidean Jordan algebras, together with the feature of the new parametric kernel function, we establish the currently best known iteration bounds for large- and small-update methods. This result reduces the gap between the practical behavior of the algorithms and their theoretical performance result.
引用
收藏
页码:547 / 570
页数:24
相关论文
共 35 条
[11]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[12]   GLOBAL AND GLOBAL LINEAR CONVERGENCE OF A SMOOTHING ALGORITHM FOR THE CARTESIAN P*(κ)-SCLCP [J].
Huang, Zheng-Hai ;
Lu, Nan .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2012, 8 (01) :67-86
[13]   An infeasible interior-point algorithm based on modified Nesterov and Todd directions for symmetric linear complementarity problem [J].
Kheirfam, B. ;
Mahdavi-Amiri, N. .
OPTIMIZATION, 2015, 64 (07) :1577-1591
[14]  
Lee YH, 2014, J GLOBAL OPTIM, V58, P137, DOI 10.1007/s10898-013-0072-z
[15]   Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions [J].
Lesaja, G. ;
Wang, G. Q. ;
Zhu, D. T. .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) :827-843
[16]  
Li L, 2017, PAC J OPTIM, V13, P255
[17]   Interior-point algorithm for linear optimization based on a new trigonometric kernel function [J].
Li, Xin ;
Zhang, Mingwang .
OPERATIONS RESEARCH LETTERS, 2015, 43 (05) :471-475
[18]   Improved smoothing Newton methods for symmetric cone complementarity problems [J].
Li, Yuan Min ;
Wang, Xing Tao ;
Wei, De Yun .
OPTIMIZATION LETTERS, 2012, 6 (03) :471-487
[19]   Polynomial Convergence of Second-Order Mehrotra-Type Predictor-Corrector Algorithms over Symmetric Cones [J].
Liu, Changhe ;
Liu, Hongwei ;
Liu, Xinze .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (03) :949-965
[20]   A new second-order corrector interior-point algorithm for semidefinite programming [J].
Liu, Changhe ;
Liu, Hongwei .
MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2012, 75 (02) :165-183