A NEW PARAMETRIC KERNEL FUNCTION YIELDING THE BEST KNOWN ITERATION BOUNDS OF INTERIOR-POINT METHODS FOR THE CARTESIAN P*(k)-SCLCP

被引:0
作者
Cai, X. Z. [1 ]
Li, L. [1 ]
El Ghami, M. [2 ]
Steihaug, T. [3 ]
Wang, G. Q. [1 ]
机构
[1] Shanghai Univ Engn Sci, Sch Math Phys & Stat, Shanghai 201620, Peoples R China
[2] Nord Univ Nesna, Fac Educ & Arts, Math Sect, N-8700 Nesna, Norway
[3] Univ Bergen, Dept Informat, Box 7803, N-5020 Bergen, Norway
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2017年 / 13卷 / 04期
基金
中国国家自然科学基金;
关键词
interior-point methods; linear complementarity problem; Cartesian P-*(k)-property; Euclidean Jordan algebras; large-update method; small-update method; polynomial complexity; LINEAR COMPLEMENTARITY-PROBLEM; TRIGONOMETRIC BARRIER TERM; SYMMETRIC CONES; SEMIDEFINITE OPTIMIZATION; JORDAN ALGEBRAS; ALGORITHMS; CONVERGENCE;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In. this paper, we introduce a new parametric kernel function with trigonometric barrier term, which yields a class of large- and small-update interior-point methods for the Cartesian P-*(n)-LCP over symmetric cones. By using Euclidean Jordan algebras, together with the feature of the new parametric kernel function, we establish the currently best known iteration bounds for large- and small-update methods. This result reduces the gap between the practical behavior of the algorithms and their theoretical performance result.
引用
收藏
页码:547 / 570
页数:24
相关论文
共 35 条
[1]   On the P*(κ) horizontal linear complementarity problems over Cartesian product of symmetric cones [J].
Asadi, S. ;
Mansouri, H. ;
Darvay, Zs. ;
Zangiabadi, M. .
OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (02) :233-257
[2]   A comparative study of kernel functions for primal-dual interior-point algorithms in linear optimization [J].
Bai, YQ ;
El Ghami, M ;
Roos, C .
SIAM JOURNAL ON OPTIMIZATION, 2004, 15 (01) :101-128
[3]   Complexity Analysis of Primal-Dual Interior-Point Methods for Linear Optimization Based on a New Parametric Kernel Function with a Trigonometric Barrier Term [J].
Cai, X. Z. ;
Wang, G. Q. ;
El Ghami, M. ;
Yue, Y. J. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[4]   The Jacobian Consistency of a One-Parametric Class of Smoothing Functions for SOCCP [J].
Chi, Xiaoni ;
Wan, Zhongping ;
Hao, Zijun .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[5]   Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term [J].
El Ghami, M. ;
Guennoun, Z. A. ;
Bouali, S. ;
Steihaug, T. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (15) :3613-3623
[6]  
El Ghami M., 2011, KERNEL FUNCTION APPR
[7]  
El Ghami M., 2013, P 1 INT S 10 BALK C, V31, P331
[8]  
Faraut J., 1994, Oxford Mathematical Monographs
[9]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[10]   A Jordan-algebraic approach to potential-reduction algorithms [J].
Faybusovich, L .
MATHEMATISCHE ZEITSCHRIFT, 2002, 239 (01) :117-129