Optimal cell transport in straight channels and networks

被引:10
作者
Farutin, Alexander [1 ,2 ]
Shen, Zaiyi [1 ,2 ]
Prado, Gad [1 ,2 ]
Audemar, Vassanti [1 ,2 ]
Ez-Zahraouy, Hamid [3 ]
Benyoussef, Abdelilah [3 ]
Polack, Benoit [4 ,5 ]
Harting, Jens [6 ,7 ,8 ]
Vlahovska, Petia M. [9 ]
Podgorski, Thomas [1 ,2 ]
Coupier, Gwennou [1 ,2 ]
Misbah, Chaouqi [1 ,2 ]
机构
[1] Univ Grenoble Alpes, LIPHY, F-38000 Grenoble, France
[2] LIPHY, CNRS, F-38000 Grenoble, France
[3] Mohammed V Univ Rabat, Fac Sci, Lab Mat Condensee & Sci Interdisciplinaires, Rabat 10000, Morocco
[4] CHU, Lab Hematol, F-38000 Grenoble, France
[5] Univ Grenoble Alpes, CNRS UMR5525, TIMC IMAG TheREx, F-38000 Grenoble, France
[6] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Further Str 248, D-90429 Nurnberg, Germany
[7] Eindhoven Univ Technol, Dept Appl Phys, POB 513, NL-5600 MB Eindhoven, Netherlands
[8] Univ Twente, Fac Sci & Technol, Mesa Inst, NL-7500 AE Enschede, Netherlands
[9] Northwestern Univ, Engn Sci & Appl Math, Evanston, IL 60208 USA
关键词
RED-BLOOD-CELLS; OPTIMAL HEMATOCRIT; FLUID VESICLES; INEXTENSIBLE VESICLES; NUMERICAL SIMULATIONS; FLOW; VISCOSITY; DYNAMICS; SUSPENSIONS; MIGRATION;
D O I
10.1103/PhysRevFluids.3.103603
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Flux of rigid or soft particles (such as drops, vesicles, red blood cells, etc.) in a channel is a complex function of particle concentration, which depends on the details of induced dissipation and suspension structure due to hydrodynamic interactions with walls or between neighboring particles. Through two-dimensional and three-dimensional simulations and a simple model that reveals the contribution of the main characteristics of the flowing suspension, we discuss the existence of an optimal volume fraction for cell transport and its dependence on the cell mechanical properties. The example of blood is explored in detail, by adopting the commonly used modeling of red blood cells dynamics. We highlight the complexity of optimization at the level of a network, due to the antagonist evolution of local volume fraction and optimal volume fraction with the channels diameter. In the case of the blood network, the most recent results on the size evolution of vessels along the circulatory network of healthy organs suggest that the red blood cell volume fraction (hematocrit) of healthy subjects is close to optimality, as far as transport only is concerned. However, the hematocrit value of patients suffering from diverse red blood cel pathologies may strongly deviate from optimality.
引用
收藏
页数:18
相关论文
共 95 条
[1]   Tank treading and unbinding of deformable vesicles in shear flow: Determination of the lift force [J].
Abkarian, M ;
Lartigue, C ;
Viallat, A .
PHYSICAL REVIEW LETTERS, 2002, 88 (06) :4
[2]   Cellular-scale hydrodynamics [J].
Abkarian, Manouk ;
Faivre, Magalie ;
Horton, Renita ;
Smistrup, Kristian ;
Best-Popescu, Catherine A. ;
Stone, Howard A. .
BIOMEDICAL MATERIALS, 2008, 3 (03)
[3]   Fluid vesicles in flow [J].
Abreu, David ;
Levant, Michael ;
Steinberg, Victor ;
Seifert, Udo .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2014, 208 :129-141
[4]   FAHRAEUS EFFECT IN NARROW CAPILLARIES (ID 3.3 TO 11.0 MU-M) [J].
ALBRECHT, KH ;
GAEHTGENS, P ;
PRIES, A ;
HEUSER, M .
MICROVASCULAR RESEARCH, 1979, 18 (01) :33-47
[5]  
[Anonymous], ADV CRYOGEN ENG, DOI DOI 10.1007/978-1-4757-9047-4_77
[6]   Mesoscale simulation of blood flow in small vessels [J].
Bagchi, Prosenjit .
BIOPHYSICAL JOURNAL, 2007, 92 (06) :1858-1877
[7]   PREDICTION OF BLOOD FLOW IN TUBES WITH DIAMETERS AS SMALL AS 29-MU [J].
BARBEE, JH ;
COKELET, GR .
MICROVASCULAR RESEARCH, 1971, 3 (01) :17-&
[8]   Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations [J].
Barber, Jared O. ;
Alberding, Jonathan P. ;
Restrepo, Juan M. ;
Secomb, Timothy W. .
ANNALS OF BIOMEDICAL ENGINEERING, 2008, 36 (10) :1690-1698
[9]  
Birchard GF, 1997, AM ZOOL, V37, P65
[10]   3D vesicle dynamics simulations with a linearly triangulated surface [J].
Boedec, G. ;
Leonetti, M. ;
Jaeger, M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (04) :1020-1034