Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs

被引:8
|
作者
Cakmak, Eren [1 ]
Schlegel, Udo [1 ]
Jackle, Dominik
Keim, Daniel [1 ]
Schreck, Tobias [2 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Graz Univ Technol, Graz, Austria
关键词
Data visualization; Visual analytics; Task analysis; Dimensionality reduction; Animation; Scalability; Dynamic Graph; Dynamic Network; Unsupervised Graph Learning; Graph Embedding; Multiscale Visualization; TIME; VISUALIZATION; EXPLORATION; PATTERNS; SYSTEM;
D O I
10.1109/TVCG.2020.3030398
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 50 条
  • [31] Spatio-temporal analysis of industrial composition with IVIID: an interactive visual analytics interface for industrial diversity
    Mack, Elizabeth A.
    Zhang, Yifan
    Rey, Sergio
    Maciejewski, Ross
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2014, 16 (02) : 183 - 209
  • [32] A framework for spatial-temporal cluster evolution representation and analysis based on graphs
    Portugal, Ivens
    Alencar, Paulo
    Cowan, Donald
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [33] Structural Temporal Graph Neural Networks for Anomaly Detection in Dynamic Graphs
    Cai, Lei
    Chen, Zhengzhang
    Luo, Chen
    Gui, Jiaping
    Ni, Jingchao
    Li, Ding
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 3747 - 3756
  • [34] INTEGRATED INFORMATION MODELING AND VISUAL SIMULATION OF ENGINEERING OPERATIONS USING DYNAMIC AUGMENTED REALITY SCENE GRAPHS
    Behzadan, Amir H.
    Kamat, Vineet R.
    JOURNAL OF INFORMATION TECHNOLOGY IN CONSTRUCTION, 2011, 16 : 259 - 277
  • [35] Spatio-Temporal Visual Analysis of Turbulent Superstructures in Unsteady Flow
    Ghaffari, Behdad
    Gatti, Davide
    Westermann, Rudiger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (07) : 3346 - 3358
  • [36] Visual Analysis of Spatio-Temporal Data: Applications in Weather Forecasting
    Diehl, A.
    Pelorosso, L.
    Delrieux, C.
    Saulo, C.
    Ruiz, J.
    Groeller, M. E.
    Bruckner, S.
    COMPUTER GRAPHICS FORUM, 2015, 34 (03) : 381 - 390
  • [37] TMNVis: Visual analysis of evolution in temporal multivariate network at multiple granularities
    Lu, B.
    Zhu, M.
    He, Q.
    Li, M.
    Jia, R.
    JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2017, 43 : 30 - 41
  • [38] Visual Analysis of Importance and Grouping in Software Dependency Graphs
    Pich, Christian
    Nachmanson, Lev
    Robertson, George G.
    SOFTVIS 2008: PROCEEDINGS OF THE 4TH ACM SYMPOSIUM ON SOFTWARE VISUALIZATION, 2008, : 29 - 32
  • [39] Visual Analysis of Collective Anomalies Using Faceted High-Order Correlation Graphs
    Yan, Jia
    Shi, Lei
    Tao, Jun
    Yu, Xiaolong
    Zhuang, Zhou
    Huang, Congcong
    Yu, Rulei
    Su, Purui
    Wang, Chaoli
    Chen, Yang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (07) : 2517 - 2534
  • [40] ProtEGOnist: Visual Analysis of Interactions in Small World Networks Using Ego-graphs
    Brich, N.
    Harbig, T. A.
    Paz, M. Witte
    Nieselt, K.
    Krone, M.
    COMPUTER GRAPHICS FORUM, 2024, 43 (03)