Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs

被引:8
|
作者
Cakmak, Eren [1 ]
Schlegel, Udo [1 ]
Jackle, Dominik
Keim, Daniel [1 ]
Schreck, Tobias [2 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Graz Univ Technol, Graz, Austria
关键词
Data visualization; Visual analytics; Task analysis; Dimensionality reduction; Animation; Scalability; Dynamic Graph; Dynamic Network; Unsupervised Graph Learning; Graph Embedding; Multiscale Visualization; TIME; VISUALIZATION; EXPLORATION; PATTERNS; SYSTEM;
D O I
10.1109/TVCG.2020.3030398
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 50 条
  • [21] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liyan Liu
    Hongxin Zhan
    Jiaxin Liu
    Jiaju Man
    Journal of Visualization, 2019, 22 : 141 - 160
  • [22] Visual Analysis for Subgroups in a Dynamic Network
    Ma, Qi
    Wei, Xueshi
    Xie, Liwenhan
    Yin, Zhiyi
    Liu, Yiping
    Huang, Chuanming
    Yuan, Xiaoru
    2018 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2018, : 106 - 107
  • [23] Visual analysis of traffic data via spatio-temporal graphs and interactive topic modeling
    Liu, Liyan
    Zhan, Hongxin
    Liu, Jiaxin
    Man, Jiaju
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 141 - 160
  • [24] dg2pix: Pixel-Based Visual Analysis of Dynamic Graphs
    Cakmak, Eren
    Jackle, Dominik
    Schreck, Tobias
    Keim, Daniel
    2020 IEEE VISUALIZATION IN DATA SCIENCE (VDS 2020), 2020, : 32 - 41
  • [25] ZoomTree: Unrestricted Zoom Paths in Multiscale Visual Analysis of Relational Databases
    Wang, Baoyuan
    Chen, Gang
    Bu, Jiajun
    Yu, Yizhou
    COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS: THEORY AND APPLICATIONS, 2011, 229 : 299 - 317
  • [26] Visual analysis of dynamic networks with geological clustering
    Ahmed, Adel
    Fu, Xiaoyan
    Hong, Seok-Hee
    Nguyen, Quan Hoang
    Xu, Kai
    VAST: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2007, PROCEEDINGS, 2007, : 221 - +
  • [27] Temporal resonant graph network for representation learning on dynamic graphs
    Yin, Zidu
    Yue, Kun
    APPLIED INTELLIGENCE, 2023, 53 (07) : 7466 - 7483
  • [28] Temporal resonant graph network for representation learning on dynamic graphs
    Zidu Yin
    Kun Yue
    Applied Intelligence, 2023, 53 : 7466 - 7483
  • [29] EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption
    Xiao, Yong
    Zheng, Kaihong
    Lonapalawong, Supaporn
    Lu, Wenjie
    Chen, Zexian
    Qian, Bin
    Zhang, Tianye
    Wang, Xin
    Chen, Wei
    FRONTIERS OF COMPUTER SCIENCE, 2022, 16 (02)
  • [30] DBNetVizor: Visual Analysis of Dynamic Basketball Player Networks
    Chang, Baofeng
    Sun, Guodao
    Zhu, Sujia
    Jiang, Qi
    Xia, Wang
    Tang, Jingwei
    Liang, Ronghua
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 591 - 605