Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs

被引:8
|
作者
Cakmak, Eren [1 ]
Schlegel, Udo [1 ]
Jackle, Dominik
Keim, Daniel [1 ]
Schreck, Tobias [2 ]
机构
[1] Univ Konstanz, Constance, Germany
[2] Graz Univ Technol, Graz, Austria
关键词
Data visualization; Visual analytics; Task analysis; Dimensionality reduction; Animation; Scalability; Dynamic Graph; Dynamic Network; Unsupervised Graph Learning; Graph Embedding; Multiscale Visualization; TIME; VISUALIZATION; EXPLORATION; PATTERNS; SYSTEM;
D O I
10.1109/TVCG.2020.3030398
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The overview-driven visual analysis of large-scale dynamic graphs poses a major challenge. We propose Multiscale Snapshots, a visual analytics approach to analyze temporal summaries of dynamic graphs at multiple temporal scales. First, we recursively generate temporal summaries to abstract overlapping sequences of graphs into compact snapshots. Second, we apply graph embeddings to the snapshots to learn low-dimensional representations of each sequence of graphs to speed up specific analytical tasks (e.g., similarity search). Third, we visualize the evolving data from a coarse to fine-granular snapshots to semi-automatically analyze temporal states, trends, and outliers. The approach enables us to discover similar temporal summaries (e.g., reoccurring states), reduces the temporal data to speed up automatic analysis, and to explore both structural and temporal properties of a dynamic graph. We demonstrate the usefulness of our approach by a quantitative evaluation and the application to a real-world dataset.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 50 条
  • [1] Mobility Graphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering
    von Landesberger, Tatiana
    Brodkorb, Felix
    Roskosch, Philipp
    Andrienko, Natalia
    Andrienko, Gennady
    Kerren, Andreas
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 11 - 20
  • [2] MoNetExplorer: A Visual Analytics System for Analyzing Dynamic Networks With Temporal Network Motifs
    Jung, Seokweon
    Shin, Donghwa
    Jeon, Hyeon
    Choe, Kiroong
    Seo, Jinwook
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (10) : 6725 - 6739
  • [3] Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes
    Hadlak, Steffen
    Schumann, Heidrun
    Cap, Clemens H.
    Wollenberg, Till
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2013, 19 (12) : 2267 - 2276
  • [4] Visual querying and analysis of temporal fiscal networks
    Didimo, Walter
    Grilli, Luca
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Pagliuca, Daniele
    INFORMATION SCIENCES, 2019, 505 : 406 - 421
  • [5] NGD: Filtering Graphs for Visual Analysis
    Huang, Xiaodi
    Huang, Changqin
    IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (03) : 381 - 395
  • [6] Motif-Based Visual Analysis of Dynamic Networks
    Cakmak, Eren
    Fuchs, Johannes
    Jaeckle, Dominik
    Schreck, Tobias
    Brandes, Ulrik
    Keim, Daniel
    2022 IEEE VISUALIZATION IN DATA SCIENCE (VDS 2022), 2022, : 17 - 26
  • [7] Attribute Signatures: Dynamic Visual Summaries for Analyzing Multivariate Geographical Data
    Turkay, Cagatay
    Slingsby, Aidan
    Hauser, Helwig
    Wood, Jo
    Dykes, Jason
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2014, 20 (12) : 2033 - 2042
  • [8] Egocentric Storylines for Visual Analysis of Large Dynamic Graphs
    Muelder, Chris W.
    Crnovrsanin, Tarik
    Sallaberry, Arnaud
    Ma, Kwan-Liu
    2013 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2013,
  • [9] Visual Analysis of Large Graphs: State-of-the-Art and Future Research Challenges
    von Landesberger, T.
    Kuijper, A.
    Schreck, T.
    Kohlhammer, J.
    van Wijk, J. J.
    Fekete, J. -D.
    Fellner, D. W.
    COMPUTER GRAPHICS FORUM, 2011, 30 (06) : 1719 - 1749
  • [10] VAUD: A Visual Analysis Approach for Exploring Spatio-Temporal Urban Data
    Chen, Wei
    Huang, Zhaosong
    Wu, Feiran
    Zhu, Minfeng
    Guan, Huihua
    Maciejewski, Ross
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (09) : 2636 - 2648