A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans

被引:462
|
作者
Yang, Wen [1 ]
Hekimi, Siegfried [1 ]
机构
[1] McGill Univ, Dept Biol, Montreal, PQ H3A 1B1, Canada
基金
加拿大健康研究院;
关键词
OXIDATIVE STRESS RESISTANCE; SYSTEMATIC RNAI SCREEN; LIVED CLK-1 MUTANTS; LIFE-SPAN; HYDROGEN-PEROXIDE; COMPLEX-III; IN-VIVO; RESTRICTION; LONG; DAMAGE;
D O I
10.1371/journal.pbio.1000556
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The nuo-6 and isp-1 genes of C. elegans encode, respectively, subunits of complex I and III of the mitochondrial respiratory chain. Partial loss-of-function mutations in these genes decrease electron transport and greatly increase the longevity of C. elegans by a mechanism that is distinct from that induced by reducing their level of expression by RNAi. Electron transport is a major source of the superoxide anion (O center dot-), which in turn generates several types of toxic reactive oxygen species (ROS), and aging is accompanied by increased oxidative stress, which is an imbalance between the generation and detoxification of ROS. These observations have suggested that the longevity of such mitochondrial mutants might result from a reduction in ROS generation, which would be consistent with the mitochondrial oxidative stress theory of aging. It is difficult to measure ROS directly in living animals, and this has held back progress in determining their function in aging. Here we have adapted a technique of flow cytometry to directly measure ROS levels in isolated mitochondria to show that the generation of superoxide is elevated in the nuo-6 and isp-1 mitochondrial mutants, although overall ROS levels are not, and oxidative stress is low. Furthermore, we show that this elevation is necessary and sufficient to increase longevity, as it is abolished by the antioxidants NAC and vitamin C, and phenocopied by mild treatment with the prooxidant paraquat. Furthermore, the absence of effect of NAC and the additivity of the effect of paraquat on a variety of long-and short-lived mutants suggest that the pathway triggered by mitochondrial superoxide is distinct from previously studied mechanisms, including insulin signaling, dietary restriction, ubiquinone deficiency, the hypoxic response, and hormesis. These findings are not consistent with the mitochondrial oxidative stress theory of aging. Instead they show that increased superoxide generation acts as a signal in young mutant animals to trigger changes of gene expression that prevent or attenuate the effects of subsequent aging. We propose that superoxide is generated as a protective signal in response to molecular damage sustained during wild-type aging as well. This model provides a new explanation for the well-documented correlation between ROS and the aged phenotype as a gradual increase of molecular damage during aging would trigger a gradually stronger ROS response.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Mitochondrial bioenergetics and disease in Caenorhabditis elegans
    Dancy, Beverley M.
    Sedensky, Margaret M.
    Morgan, Philip G.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2015, 20 : 198 - 228
  • [32] Longevity in Caenorhabditis elegans reduced by mating but not gamete production
    Gems, D
    Riddle, DL
    NATURE, 1996, 379 (6567) : 723 - 725
  • [33] Dietary and microbiome factors determine longevity in Caenorhabditis elegans
    Sanchez-Blanco, Adolfo
    Rodriguez-Matellan, Alberto
    Gonzalez-Paramas, Ana
    Gonzalez-Manzano, Susana
    Kim, Stuart K.
    Mollinedo, Faustino
    AGING-US, 2016, 8 (07): : 1513 - 1539
  • [34] Arbutin increases Caenorhabditis elegans longevity and stress resistance
    Zhou, Lin
    Fu, Xueqi
    Jiang, Liyan
    Wang, Lu
    Bai, Shuju
    Jiao, Yan
    Xing, Shu
    Li, Wannan
    Ma, Junfeng
    PEERJ, 2017, 5
  • [35] Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants
    Bansal, Ankita
    Zhu, Lihua J.
    Yen, Kelvin
    Tissenbaum, Heidi A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) : E277 - E286
  • [36] Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans
    Folick, Andrew
    Oakley, Holly D.
    Yu, Yong
    Armstrong, Eric H.
    Kumari, Manju
    Sanor, Lucas
    Moore, David D.
    Ortlund, Eric A.
    Zechner, Rudolf
    Wang, Meng C.
    SCIENCE, 2015, 347 (6217) : 83 - 86
  • [37] The influence of metabolic rate on longevity in the nematode Caenorhabditis elegans
    Van Voorhies, WA
    AGING CELL, 2002, 1 (02) : 91 - 101
  • [38] Direct isolation of longevity mutants in the nematode Caenorhabditis elegans
    Duhon, SA
    Murakami, S
    Johnson, TE
    DEVELOPMENTAL GENETICS, 1996, 18 (02): : 144 - 153
  • [39] Longevity interventions temporally scale healthspan in Caenorhabditis elegans
    Statzer, Cyril
    Reichert, Peter
    Dual, Jurg
    Ewald, Collin Y.
    ISCIENCE, 2022, 25 (03)
  • [40] Heating stress patterns in Caenorhabditis elegans longevity and survivorship
    Anatoli I. Michalski
    Thomas E. Johnson
    James R. Cypser
    Anatoli I. Yashin
    Biogerontology, 2001, 2 : 35 - 44