Image segmentation using histogram fitting and spatial information

被引:0
作者
Cheng, Da-Chuan
Jiang, Xiaoyi
Schmidt-Trucksaess, Arno
机构
来源
ADVANCES IN MASS DATA ANALYSIS OF SIGNALS AND IMAGES IN MEDICINE BIOTECHNOLOGY AND CHEMISTRY | 2007年 / 4826卷
关键词
histogram clustering; curve fitting; trust-region method; image segmentation;
D O I
暂无
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this paper, we introduce a novel unsupervised segmentation method using a histogram fitting method to find out the optimal histogram clustering based on multi Gaussian models. The fitting problem is performed via the trust region reflective Newton method to minimize a predefined cost function. The histogram clustering is the global information describing the probability of a given gray value belonging to a category. Together with the consideration of the spatial information, the image segmentation is performed. We demonstrate some applications on medical images such as brain CT and MRI.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 16 条
[1]  
[Anonymous], 1998, Encyclopedia of Biostatistics
[2]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[3]   MULTIPLE RESOLUTION SEGMENTATION OF TEXTURED IMAGES [J].
BOUMAN, C ;
LIU, BD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (02) :99-113
[4]  
CHAN T, 2007, IN PRESS 1 INT C SCA
[5]   Statistical region snake-based segmentation adapted to different physical noise models [J].
Chesnaud, C ;
Réfrégier, P ;
Boulet, V .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (11) :1145-1157
[6]  
COLEMAN TF, 1992, TR921315
[7]   A robust competitive clustering algorithm with applications in computer vision [J].
Frigui, H ;
Krishnapuram, R .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (05) :450-465
[8]  
HERMES L, 2002, LNCS, V2359, P577
[9]   A nonparametric statistical method for image segmentation using information theory and curve evolution [J].
Kim, JM ;
Fisher, JW ;
Yezzi, A ;
Çetin, M ;
Willsky, AS .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (10) :1486-1502
[10]   A self-organizing network for hyperellipsoidal clustering (HEC) [J].
Mao, JC ;
Jain, AK .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01) :16-29