Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress

被引:43
|
作者
Aydinoglu, Fatma [1 ]
机构
[1] Gebze Tech Univ, Mol Biol & Genet Dept, Kocaeli, Turkey
关键词
Chilling tolerance; Leaf size; Maize microRNAs; miRNome; Organ growth; Plant cell cycle; TRANSCRIPTION FACTORS; CELL-DIVISION; SMALL RNAS; KINEMATIC ANALYSIS; GENE-EXPRESSION; ARABIDOPSIS; CYCLE; TOLERANCE; MECHANISM; MIR396;
D O I
10.1007/s00425-019-03331-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusion miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 degrees C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] The Paleobiolinguistics of Maize (Zea mays L.)
    Brown, Cecil H.
    Clement, Charles R.
    Epps, Patience
    Luedeling, Eike
    Wichmann, Soren
    ETHNOBIOLOGY LETTERS, 2014, 5 : 52 - 64
  • [42] Genetic dissection of the maize (Zea mays L.) MAMP response
    Zhang, Xinye
    Valdes-Lopez, Oswaldo
    Arellano, Consuelo
    Stacey, Gary
    Balint-Kurti, Peter
    THEORETICAL AND APPLIED GENETICS, 2017, 130 (06) : 1155 - 1168
  • [43] Growth and development of maize (Zea mays L) seedlings under chilling conditions in the field
    Verheul, MJ
    Picatto, C
    Stamp, P
    EUROPEAN JOURNAL OF AGRONOMY, 1996, 5 (1-2) : 31 - 43
  • [44] Genetic dissection of the maize (Zea mays L.) MAMP response
    Xinye Zhang
    Oswaldo Valdés-López
    Consuelo Arellano
    Gary Stacey
    Peter Balint-Kurti
    Theoretical and Applied Genetics, 2017, 130 : 1155 - 1168
  • [45] Early response to salt ions in maize (Zea mays L.)
    Geilfus, Christoph-Martin
    Ludwig-Mueller, Jutta
    Bardos, Gyoengyi
    Zoerb, Christian
    JOURNAL OF PLANT PHYSIOLOGY, 2018, 220 : 173 - 180
  • [46] Influence of elevation on growth duration of maize (Zea mays L.)
    陈学君
    曹广才
    贾银锁
    吴东兵
    陈婧
    于亚雄
    李唯
    李杰
    中国生态农业学报(中英文), 2009, (03) : 527 - 532
  • [47] Response of sweet maize (Zea mays L.) hybrids to halosulfuron
    Sikkema, Sarah R.
    Soltani, Nader
    Sikkema, Peter H.
    Robinson, Darren E.
    CROP PROTECTION, 2008, 27 (3-5) : 695 - 699
  • [48] Investigation of the chilling tolerance of maize (Zea mays L.) hybrids at emergence and in the seedling stage
    Záborszky, S
    Gyenes-Hegyi, ZS
    Berzy, T
    NOVENYTERMELES, 2001, 50 (05): : 517 - 529
  • [49] Identification and characterisation of candidate genes involved in chilling responses in maize (Zea mays L.)
    Yang, Guang
    Zou, Hongda
    Wu, Ying
    Liu, Hongkui
    Yuan, Yaping
    PLANT CELL TISSUE AND ORGAN CULTURE, 2011, 106 (01) : 127 - 141
  • [50] Identification and characterisation of candidate genes involved in chilling responses in maize (Zea mays L.)
    Guang Yang
    Hongda Zou
    Ying Wu
    Hongkui Liu
    Yaping Yuan
    Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 106 : 127 - 141