Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress

被引:43
|
作者
Aydinoglu, Fatma [1 ]
机构
[1] Gebze Tech Univ, Mol Biol & Genet Dept, Kocaeli, Turkey
关键词
Chilling tolerance; Leaf size; Maize microRNAs; miRNome; Organ growth; Plant cell cycle; TRANSCRIPTION FACTORS; CELL-DIVISION; SMALL RNAS; KINEMATIC ANALYSIS; GENE-EXPRESSION; ARABIDOPSIS; CYCLE; TOLERANCE; MECHANISM; MIR396;
D O I
10.1007/s00425-019-03331-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusion miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 degrees C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] MAIZE (ZEA MAYS L.) LEAF DISEASES IN LATVIA
    Gulbis, Kaspars
    Bankina, Biruta
    Nordic View to Sustainable Rural Development, 2015, : 77 - 77
  • [12] Exogenous Brassinolide Enhances the Growth and Cold Resistance of Maize (Zea mays L.) Seedlings under Chilling Stress
    Sun, Yujun
    He, Yunhan
    Irfan, Ali Raza
    Liu, Xinmeng
    Yu, Qiaoqiao
    Zhang, Qian
    Yang, Deguang
    AGRONOMY-BASEL, 2020, 10 (04):
  • [13] The early stress response of maize (Zea mays L.) to chloride salinity
    Zhang, Xudong
    Zoerb, Christian
    Kraenzlein, Markus
    Franzisky, Bastian L.
    Kaiser, Hartmut
    Geilfus, Christoph-Martin
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2019, 205 (06) : 586 - 597
  • [14] Physiological response of maize (Zea mays L.) to high temperature stress
    Coskun, Yalcin
    Coskun, Ayse
    Demirel, Ufuk
    Ozden, Mustafa
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2011, 5 (08) : 966 - 972
  • [15] Transcriptome response of maize (Zea mays L.) seedlings to heat stress
    Li, Zhong-Guang
    Ye, Xin-Yu
    PROTOPLASMA, 2022, 259 (02) : 357 - 369
  • [16] Transcriptome response of maize (Zea mays L.) seedlings to heat stress
    Zhong-Guang Li
    Xin-Yu Ye
    Protoplasma, 2022, 259 : 357 - 369
  • [17] Protein changes in response to pyrene stress in maize (Zea mays L.) leaves
    Xu, Sheng-You
    Chen, Ying-Xu
    Wu, Wei-Xiang
    Zheng, Shao-Jian
    Xue, Sheng-Guo
    Yang, Shi-Ying
    Peng, Yi-Jin
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2007, 49 (02) : 187 - 195
  • [18] Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress
    Bakht, J.
    Shafi, M.
    Jamal, Y.
    Sher, H.
    SPANISH JOURNAL OF AGRICULTURAL RESEARCH, 2011, 9 (01) : 252 - 261
  • [19] Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize (Zea mays L.)
    Pranjal Yadava
    Vikram Dayaman
    Astha Agarwal
    Krishan Kumar
    Ishwar Singh
    Rachana Verma
    Tanushri Kaul
    Physiology and Molecular Biology of Plants, 2022, 28 : 885 - 898
  • [20] Fine-tuning the transcriptional regulatory model of adaptation response to phosphate stress in maize (Zea mays L.)
    Yadava, Pranjal
    Dayaman, Vikram
    Agarwal, Astha
    Kumar, Krishan
    Singh, Ishwar
    Verma, Rachana
    Kaul, Tanushri
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (04) : 885 - 898