Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress

被引:43
|
作者
Aydinoglu, Fatma [1 ]
机构
[1] Gebze Tech Univ, Mol Biol & Genet Dept, Kocaeli, Turkey
关键词
Chilling tolerance; Leaf size; Maize microRNAs; miRNome; Organ growth; Plant cell cycle; TRANSCRIPTION FACTORS; CELL-DIVISION; SMALL RNAS; KINEMATIC ANALYSIS; GENE-EXPRESSION; ARABIDOPSIS; CYCLE; TOLERANCE; MECHANISM; MIR396;
D O I
10.1007/s00425-019-03331-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusion miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 degrees C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress
    Fatma Aydinoglu
    Planta, 2020, 251
  • [2] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Cao, Liru
    Lu, Xiaomin
    Wang, Guorui
    Zhang, Pengyu
    Fu, Jiaxu
    Wang, Zhenhua
    Wei, Li
    Wang, Tongchao
    MOLECULAR GENETICS AND GENOMICS, 2021, 296 (06) : 1203 - 1219
  • [3] Transcriptional regulatory networks in response to drought stress and rewatering in maize (Zea mays L.)
    Liru Cao
    Xiaomin Lu
    Guorui Wang
    Pengyu Zhang
    Jiaxu Fu
    Zhenhua Wang
    Li Wei
    Tongchao Wang
    Molecular Genetics and Genomics, 2021, 296 : 1203 - 1219
  • [4] Arsenate (AsV) stress response in maize (Zea mays L.)
    Ghosh, Supriya
    Shaw, Arun K.
    Azahar, Ikbal
    Adhikari, Sinchan
    Jana, Samarjit
    Roy, Sankhajit
    Kundu, Abhishek
    Sherpa, Ang R.
    Hossain, Zahed
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2016, 130 : 53 - 67
  • [5] Regulatory Mechanism of Maize (Zea mays L.) miR164 in Salt Stress Response
    T. Shan
    R. Fu
    Y. Xie
    Q. Chen
    Y. Wang
    Zh. Li
    X. Song
    P. Li
    B. Wang
    Russian Journal of Genetics, 2020, 56 : 835 - 842
  • [6] Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress
    Akhtar, Tasneem
    Zia-ur-Rehman, Muhammad
    Naeem, Asif
    Nawaz, Rab
    Ali, Shafaqat
    Murtaza, Ghulam
    Maqsood, Muhammad Aamer
    Azhar, Muhammad
    Khalid, Hinnan
    Rizwan, Muhammad
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (06) : 5521 - 5529
  • [7] Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress
    Tasneem Akhtar
    Muhammad Zia-ur-Rehman
    Asif Naeem
    Rab Nawaz
    Shafaqat Ali
    Ghulam Murtaza
    Muhammad Aamer Maqsood
    Muhammad Azhar
    Hinnan Khalid
    Muhammad Rizwan
    Environmental Science and Pollution Research, 2017, 24 : 5521 - 5529
  • [8] Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress
    Aroca, R
    Vernieri, P
    Irigoyen, JJ
    Sánchez-Díaz, M
    Tognoni, F
    Pardossi, A
    PLANT SCIENCE, 2003, 165 (03) : 671 - 679
  • [9] Seed germination, and growth and development of maize (Zea mays L.) seedlings in chilling conditions
    Maslak, J.
    Baczek-Kwinta, R.
    Oleksiewicz, A.
    Grzesiak, M. T.
    Grzesiak, S.
    ACTA PHYSIOLOGIAE PLANTARUM, 2007, 29 : S82 - S82
  • [10] Elucidating the Pathogen Variability of Northern Leaf Blight of Maize ( Zea mays L.) in Bihar, India
    Anwer, Md. Arshad
    Kumar, Amod
    Rashid, Md. Mahtab
    Ahmad, Shamsher
    Abu Nayyer, Md.
    Imran, Mohammad
    Ahmad, Md. Reyaz
    Singh, Raj Narain
    JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 2024,