An upper bound for the Ramsey number of a cycle of length four versus wheels

被引:0
作者
Surahmat
Baskoro, ET
Uttunggadewa, S
Broersma, H
机构
[1] ITB, Dept Math, Bandung 40132, Indonesia
[2] Univ Twente, Fac Math Sci, NL-7500 AE Enschede, Netherlands
来源
COMBINATORIAL GEOMETRY AND GRAPH THEORY | 2005年 / 3330卷
关键词
Ramsey number; cycle; wheel;
D O I
10.1007/978-3-540-30540-8_20
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For given graphs G and H, the Ramsey number R(G, H) is the smallest positive integer n such that every graph F of n vertices satisfies the following property: either F contains G or the complement of F contains H. In this paper, we show that the Ramsey number R(C-4, W-m) <= m + [m/3] + 1 for m >= 6.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 8 条
[1]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[2]   GENERALIZED RAMSEY THEORY FOR GRAPHS .3. SMALL OFF-DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :335-&
[3]  
Chvatal V., 1977, J. Graph Theory, V1, P93, DOI [10.1002/jgt.3190010118, DOI 10.1002/JGT.3190010118]
[4]  
Radziszowski S., 1994, AUSTRALAS J COMB, V9, P221
[5]  
RADZISZOWSKI SP, 2002, ELECT J COMBINAT JUL
[6]  
SURAHMAT ET, 2002, P 11 NAT C MATH U NE, P172
[7]  
Tse K.K., 2003, AUSTRALAS J COMB, V27, P163
[8]  
Zhou H.L., 1995, J MATH SHUXUE ZAZHI, V15, P119