Online Appearance Model Learning and Generation for Adaptive Visual Tracking

被引:14
|
作者
Wang, Peng [1 ]
Qiao, Hong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, Beijing 100029, Peoples R China
关键词
Adaptive visual tracking; appearance variation; collaborative models; gradual drift; model learning; OBJECT TRACKING; ROBUST TRACKING; COLOR;
D O I
10.1109/TCSVT.2011.2105598
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Several adaptive visual tracking algorithms have been recently proposed to capture the varying appearance of target. However, adaptability may also result in the problem of gradual drift, especially when the target appearance changes drastically. This paper gives some theoretical principles for online learning of target model, and then presents a novel adaptive tracking algorithm which is able to effectively cope with drastic variations in target appearance and resist gradual drift. Once target is localized in each frame, the patches sampled from target observation are first classified into foreground and background using an effective classifier. Then the adaptive, pure and time-continuous target model is extracted online through two processes: absorption process and rejection process, through which only the reliable features with high separability are absorbed in the new target model, while the "dangerous" features which may cause interfusion of background patterns are rejected. To minimize the influence of background and keep the temporal continuity of target model, two collaborative models dominant model and continuous model are designed. The proposed learning and generation mechanisms of target model are finally embedded in an adaptive tracking system. Experimental results demonstrate the robust performance of the proposed algorithm under challenging conditions.
引用
收藏
页码:156 / 169
页数:14
相关论文
共 50 条
  • [31] Visual object tracking by correlation filters and online learning
    Zhang, Xin
    Xia, Gui-Song
    Lu, Qikai
    Shen, Weiming
    Zhang, Liangpei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 : 77 - 89
  • [32] Online learning of multiple detectors for visual object tracking
    Quan, Wei
    Chen, Jin-Xiong
    Yu, Nan-Yang
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (05): : 875 - 882
  • [33] Variational Online Learning Correlation Filter for Visual Tracking
    Wang, Zhongyang
    Liu, Feng
    Deng, Lizhen
    MATHEMATICS, 2024, 12 (12)
  • [34] Online Multi-Expert Learning for Visual Tracking
    Li, Zhetao
    Wei, Wei
    Zhang, Tianzhu
    Wang, Meng
    Hou, Sujuan
    Peng, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 934 - 946
  • [35] NONLINEAR LEARNING USING LCC FOR ONLINE VISUAL TRACKING
    Hu, Hongwei
    Ma, Bo
    Xu, Tao
    Pang, Junbiao
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [36] Visual tracking based on online sparse feature learning
    Wang, Zelun
    Wang, Jinjun
    Zhang, Shun
    Gong, Yihong
    IMAGE AND VISION COMPUTING, 2015, 38 : 24 - 32
  • [37] A Survey of Appearance Models in Visual Object Tracking
    Li, Xi
    Hu, Weiming
    Shen, Chunhua
    Zhang, Zhongfei
    Dick, Anthony
    Van den Hengel, Anton
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2013, 4 (04)
  • [38] Structural Local DCT Sparse Appearance Model for Visual Tracking
    Shreyamsha Kumar, B. K.
    Swamy, M. N. S.
    Ahmad, M. Omair
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1194 - 1197
  • [39] Online dual dictionary learning for visual object tracking
    Cheng, Xu
    Zhang, Yifeng
    Zhou, Lin
    Lu, Guojun
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (12) : 10881 - 10896
  • [40] Adaptive Updating Probabilistic Model for Visual Tracking
    Fang, Kai
    Liu, Shuoyan
    Xu, Chunjie
    Xue, Hao
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (04): : 914 - 917