Automated Segmentation of Autofluorescence Lesions in Stargardt Disease

被引:4
作者
Zhao, Peter Y. [1 ]
Branham, Kari [1 ]
Schlegel, Dana [1 ]
Fahim, Abigail T. [1 ]
Jayasundera, K. Thiran [1 ]
机构
[1] Univ Michigan, WK Kellogg Eye Ctr, Dept Ophthalmol & Visual Sci, Ann Arbor, MI USA
来源
OPHTHALMOLOGY RETINA | 2022年 / 6卷 / 11期
基金
美国国家卫生研究院;
关键词
Autofluorescence; Deep learning; Machine Learning; Automated segmentation; Stargardt disease; FUNDUS AUTOFLUORESCENCE; PROGRESSION; PROGSTAR; ATROPHY;
D O I
10.1016/j.oret.2022.05.020
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Objective: To train a deep learning (DL) algorithm to perform fully automated semantic segmentation of multiple autofluorescence lesion types in Stargardt disease. Design: Cross-sectional study with retrospective imaging data. Subjects: The study included 193 images from 193 eyes of 97 patients with Stargardt disease. Methods: Fundus autofluorescence images obtained from patient visits between 2013 and 2020 were annotated with ground-truth labels. Model training and evaluation were performed using fivefold cross-validation. Main Outcomes Measures: Dice similarity coefficients, intraclass correlation coefficients, and Bland-Altman analyses comparing algorithm-predicted and grader-labeled segmentations. Results: The overall Dice similarity coefficient across all lesion classes was 0.78 (95% confidence interval [CI], 0.69-0.86). Dice coefficients were 0.90 (95% CI, 0.85-0.94) for areas of definitely decreased autofluorescence (DDAF), 0.55 (95% CI, 0.35-0.76) for areas of questionably decreased autofluorescence (QDAF), and 0.88 (95% CI, 0.73-1.00) for areas of abnormal background autofluorescence (ABAF). Intraclass correlation coefficients comparing the ground-truth and automated methods were 0.997 (95% CI, 0.996-0.998) for DDAF, 0.863 (95% CI, 0.823-0.895) for QDAF, and 0.974 (95% CI, 0.966-0.980) for ABAF. Conclusions: A DL algorithm performed accurate segmentation of autofluorescence lesions in Stargardt disease, demonstrating the feasibility of fully automated segmentation as an alternative to manual or semiautomated labeling methods. (c) 2022 Published by Elsevier Inc. on behalf of the American Academy of Ophthalmology
引用
收藏
页码:1098 / 1104
页数:7
相关论文
共 23 条
  • [1] A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy
    Allikmets, R
    Singh, N
    Sun, H
    Shroyer, NE
    Hutchinson, A
    Chidambaram, A
    Gerrard, B
    Baird, L
    Stauffer, D
    Peiffer, A
    Rattner, A
    Smallwood, P
    Li, YX
    Anderson, KL
    Lewis, RA
    Nathans, J
    Leppert, M
    Dean, M
    Lupski, JR
    [J]. NATURE GENETICS, 1997, 15 (03) : 236 - 246
  • [2] Deep learning segmentation of hyperautofluorescent fleck lesions in Stargardt disease
    Charng, Jason
    Xiao, Di
    Mehdizadeh, Maryam
    Attia, Mary S.
    Arunachalam, Sukanya
    Lamey, Tina M.
    Thompson, Jennifer A.
    McLaren, Terri L.
    De Roach, John N.
    Mackey, David A.
    Frost, Shaun
    Chen, Fred K.
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [3] Clinically applicable deep learning for diagnosis and referral in retinal disease
    De Fauw, Jeffrey
    Ledsam, Joseph R.
    Romera-Paredes, Bernardino
    Nikolov, Stanislav
    Tomasev, Nenad
    Blackwell, Sam
    Askham, Harry
    Glorot, Xavier
    O'Donoghue, Brendan
    Visentin, Daniel
    van den Driessche, George
    Lakshminarayanan, Balaji
    Meyer, Clemens
    Mackinder, Faith
    Bouton, Simon
    Ayoub, Kareem
    Chopra, Reena
    King, Dominic
    Karthikesalingam, Alan
    Hughes, Cian O.
    Raine, Rosalind
    Hughes, Julian
    Sim, Dawn A.
    Egan, Catherine
    Tufail, Adnan
    Montgomery, Hugh
    Hassabis, Demis
    Rees, Geraint
    Back, Trevor
    Khaw, Peng T.
    Suleyman, Mustafa
    Cornebise, Julien
    Keane, Pearse A.
    Ronneberger, Olaf
    [J]. NATURE MEDICINE, 2018, 24 (09) : 1342 - +
  • [4] Tackling the Challenges of Product Development Through a Collaborative Rare Disease Network: The Foundation Fighting Blindness Consortium
    Durham, Todd A.
    Duncan, Jacque L.
    Ayala, Allison R.
    Birch, David G.
    Cheetham, Janet K.
    Ferris, Frederick L., III
    Hoyng, Carel B.
    Pennesi, Mark E.
    Sahel, Jose-Alain
    [J]. TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (04):
  • [5] A Longitudinal Study of Stargardt Disease: Quantitative Assessment of Fundus Autofluorescence, Progression, and Genotype Correlations
    Fujinami, Kaoru
    Lois, Noemi
    Mukherjee, Rajarshi
    McBain, Vikki A.
    Tsunoda, Kazushige
    Tsubota, Kazuo
    Stone, Edwin M.
    Fitzke, Fred W.
    Bunce, Catey
    Moore, Anthony T.
    Webster, Andrew R.
    Michaelides, Michel
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (13) : 8181 - 8190
  • [6] He K., PREPRINT
  • [7] Atrophy Expansion Rates in Stargardt Disease Using Ultra-Widefield Fundus Autofluorescence
    Jeffery, Rachael C. Heath
    Thompson, Jennifer A.
    Lo, Johnny
    Lamey, Tina M.
    McLaren, Terri L.
    McAllister, Ian L.
    Mackey, David A.
    Constable, Ian J.
    De Roach, John N.
    Chen, Fred K.
    [J]. OPHTHALMOLOGY SCIENCE, 2021, 1 (01):
  • [8] Kingma D P., 2014, P INT C LEARN REPR
  • [9] COMPARISON OF MANUAL AND SEMIAUTOMATED FUNDUS AUTOFLUORESCENCE ANALYSIS OF MACULAR ATROPHY IN STARGARDT DISEASE PHENOTYPE
    Kuehlewein, Laura
    Hariri, Amir H.
    Ho, Alexander
    Dustin, Laurie
    Wolfson, Yulia
    Strauss, Rupert W.
    Scholl, Hendrik P. N.
    Sadda, Srinivas R.
    [J]. RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2016, 36 (06): : 1216 - 1221
  • [10] Insights into autofluorescence patterns in Stargardt macular dystrophy using ultra-wide-field imaging
    Kumar, Vinod
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2017, 255 (10) : 1917 - 1922