Including topology change in loop quantum gravity with topspin network formalism with application to homogeneous and isotropic cosmology

被引:1
作者
Villani, Mattia [1 ,2 ]
机构
[1] Univ Urbino Carlo Bo, DISPEA, Via Santa Chiara 27, I-61029 Urbino, Italy
[2] Ist Nazl Fis Nucl, Sez Firenze, Via B Rossi 1, I-50019 Florence, Italy
关键词
quantum gravity; algebraic topology; geometry; differential geometry and topology; FREE DIFFERENTIAL-CALCULUS; BRANCHED-COVERINGS; TRIANGULATIONS; SUM; 2D;
D O I
10.1088/1361-6382/ac0e1a
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We apply topspin network formalism to loop quantum gravity in order to include in the theory the possibility of changes in the topology of spacetime. We apply this formalism to three toy models: with the first, we find that the topology can actually change due to the action of the Hamiltonian constraint and with the second we find that the final state might be a superposition of states with different topologies. In the third and last application, we consider an homogeneous and isotropic Universe, calculating the difference equation that describes the evolution of the system and which are the final topological states after the action of the Hamiltonian constraint. For this last case, we also calculate the transition amplitudes and probabilities from the initial to the final states.
引用
收藏
页数:21
相关论文
共 45 条
  • [1] Planck 2018 results: VIII. Gravitational lensing
    Aghanim, N.
    Akrami, Y.
    Ashdown, M.
    Aumont, J.
    Baccigalupi, C.
    Ballardini, M.
    Banday, A. J.
    Barreiro, R. B.
    Bartolo, N.
    Basak, S.
    Benabed, K.
    Bernard, J. -P.
    Bersanelli, M.
    Bielewicz, P.
    Bock, J. J.
    Bond, J. R.
    Borrill, J.
    Bouchet, F. R.
    Boulanger, F.
    Bucher, M.
    Burigana, C.
    Calabrese, E.
    Cardoso, J. -F.
    Carron, J.
    Challinor, A.
    Chiang, H. C.
    Colombo, L. P. L.
    Combet, C.
    Crill, B. P.
    Cuttaia, F.
    de Bernardis, P.
    de Zotti, G.
    Delabrouille, J.
    Di Valentino, E.
    Diego, J. M.
    Dore, O.
    Douspis, M.
    Ducout, A.
    Dupac, X.
    Efstathiou, G.
    Elsner, F.
    Ensslin, T. A.
    Eriksen, H. K.
    Fantaye, Y.
    Fernandez-Cobos, R.
    Finelli, F.
    Forastieri, F.
    Frailis, M.
    Fraisse, A. A.
    Franceschi, E.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 641 (641)
  • [2] Alexander JW, 1920, Bull. Amer. Math. Soc., V26, P370, DOI 10.1090/S0002-9904-1920-03319-7
  • [3] [Anonymous], 1965, LECT QUANTUM MECH
  • [4] [Anonymous], 1976, 3-Manifolds
  • [5] Aschenbrenner M., 2012, ARXIV12050202MATHGT
  • [6] NEW VARIABLES FOR CLASSICAL AND QUANTUM-GRAVITY
    ASHTEKAR, A
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (18) : 2244 - 2247
  • [7] Quantum nature of the big bang: Improved dynamics
    Ashtekar, Abhay
    Pawlowski, Tomasz
    Singh, Parampreet
    [J]. PHYSICAL REVIEW D, 2006, 74 (08)
  • [8] Coherent spin-networks
    Bianchi, Eugenio
    Magliaro, Elena
    Perini, Claudio
    [J]. PHYSICAL REVIEW D, 2010, 82 (02)
  • [9] Bojowald M., 2011, Quantum Cosmology A fundamental Description of the Universe
  • [10] Burde G., 2003, KNOTS, V2nd edn, pP 191