Long-time averaging for integrable Hamiltonian dynamics

被引:8
作者
Cancès, E
Castella, F
Chartier, P
Faou, E [1 ]
Le Bris, C
Legoll, F
Turinici, G
机构
[1] INRIA, IPSO, Rennes, France
[2] Ecole Natl Ponts & Chaussees, CERMICS, Marne La Vallee, France
[3] INRIA, MICMAC, Rocquencourt, France
[4] Univ Rennes 1, IRMAR, F-35042 Rennes, France
[5] EDF, R&D, Anal & Modeles Numer, Clamart, France
关键词
Manifold; Dynamical System; Mathematical Method; Integrable System; Numerical Scheme;
D O I
10.1007/s00211-005-0599-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a Hamiltonian dynamical system, we address the question of computing the limit of the time-average of an observable. For a completely integrable system, it is known that ergodicity can be characterized by a diophantine condition on its frequencies and that this limit coincides with the space-average over an invariant manifold. In this paper, we show that we can improve the rate of convergence upon using a filter function in the time-averages. We then show that this convergence persists when a symplectic numerical scheme is applied to the system, up to the order of the integrator.
引用
收藏
页码:211 / 232
页数:22
相关论文
共 13 条
  • [1] Arnol'd V. I., 1963, Uspehi Mat. Nauk, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
  • [2] ARNOLD VI, 1978, GRADUATE TEXTS MATH, V60
  • [3] CANCES E, 2003, UNPUB J CHEM PHYS
  • [4] Do Carmo M. P., 1992, SERIES MATH THEORY A
  • [5] Hairer E., 2002, Geometric numerical integration, DOI 10.1007/978-3-662-05018-7
  • [6] Kolmogorov A. N., 1954, Dokl. Akad. Nauk SSSR, V98, P527, DOI DOI 10.1007/BFB0021737
  • [7] Kolmogorov A. N., 1954, P INT C MATH AMSTERD, V1, P315
  • [8] Moser J. K., 1962, NACHR AKAD WISS G MP, V2 II, P1
  • [9] Nekhoroshev N.N., 1977, RUSS MATH SURV, V32, P1, DOI DOI 10.1070/RM1977V032N06ABEH003859
  • [10] PAPOULIS A, 1984, ELECT ELECT ENG SERI