Genome-wide epigenetic isolation by environment in a widespread Anolis lizard

被引:24
作者
Wogan, Guinevere O. U. [1 ]
Yuan, Michael L. [1 ]
Mahler, D. Luke [2 ]
Wang, Ian J. [1 ]
机构
[1] Univ Calif Berkeley, Coll Nat Resources, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
[2] Univ Toronto, Dept Ecol & Evolutionary Biol, Toronto, ON, Canada
关键词
anole; DNA methylation; isolation by distance; landscape epigenetics; landscape genetics; population structure; DNA METHYLATION; POPULATION-STRUCTURE; R-PACKAGE; GENETIC-VARIATION; BETA-DIVERSITY; WATER-LOSS; CLIMATE; EVOLUTION; ADAPTATION; SIGNATURE;
D O I
10.1111/mec.15301
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome-wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population-level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.
引用
收藏
页码:40 / 55
页数:16
相关论文
共 118 条
  • [1] genomation: a toolkit to summarize, annotate and visualize genomic intervals
    Akalin, Altuna
    Franke, Vedran
    Vlahovicek, Kristian
    Mason, Christopher E.
    Schuebeler, Dirk
    [J]. BIOINFORMATICS, 2015, 31 (07) : 1127 - 1129
  • [2] Akalin A, 2012, GENOME BIOL, V13, DOI [10.1186/gb-2012-13-10-R87, 10.1186/gb-2012-13-10-r87]
  • [3] Natural variation of DNA methylation and gene expression may determine local adaptations of Scots pine populations
    Alakarppa, Emmi
    Salo, Heikki M.
    Valledor, Luis
    Jesus Canal, Maria
    Haggman, Hely
    Vuosku, Jaana
    [J]. JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (21) : 5293 - 5305
  • [4] The genome of the green anole lizard and a comparative analysis with birds and mammals
    Alfoeldi, Jessica
    Di Palma, Federica
    Grabherr, Manfred
    Williams, Christina
    Kong, Lesheng
    Mauceli, Evan
    Russell, Pamela
    Lowe, Craig B.
    Glor, Richard E.
    Jaffe, Jacob D.
    Ray, David A.
    Boissinot, Stephane
    Shedlock, Andrew M.
    Botka, Christopher
    Castoe, Todd A.
    Colbourne, John K.
    Fujita, Matthew K.
    Moreno, Ricardo Godinez
    ten Hallers, Boudewijn F.
    Haussler, David
    Heger, Andreas
    Heiman, David
    Janes, Daniel E.
    Johnson, Jeremy
    de Jong, Pieter J.
    Koriabine, Maxim Y.
    Lara, Marcia
    Novick, Peter A.
    Organ, Chris L.
    Peach, Sally E.
    Poe, Steven
    Pollock, David D.
    de Queiroz, Kevin
    Sanger, Thomas
    Searle, Steve
    Smith, Jeremy D.
    Smith, Zachary
    Swofford, Ross
    Turner-Maier, Jason
    Wade, Juli
    Young, Sarah
    Zadissa, Amonida
    Edwards, Scott V.
    Glenn, Travis C.
    Schneider, Christopher J.
    Losos, Jonathan B.
    Lander, Eric S.
    Breen, Matthew
    Ponting, Chris P.
    Lindblad-Toh, Kerstin
    [J]. NATURE, 2011, 477 (7366) : 587 - 591
  • [5] Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after
    Angers, Bernard
    Castonguay, Emilie
    Massicotte, Rachel
    [J]. MOLECULAR ECOLOGY, 2010, 19 (07) : 1283 - 1295
  • [6] [Anonymous], 2015, Hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.04-15
  • [7] Genome-Wide DNA Methylation Profiling Reveals Epigenetic Adaptation of Stickleback to Marine and Freshwater Conditions
    Artemov, Artem V.
    Mugue, Nikolai S.
    Rastorguev, Sergey M.
    Zhenilo, Svetlana
    Mazur, Alexander M.
    Tsygankova, Svetlana V.
    Boulygina, Eugenia S.
    Kaplun, Daria
    Nedoluzhko, Artem V.
    Medvedeva, Yulia A.
    Prokhortchouk, Egor B.
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2017, 34 (09) : 2203 - 2213
  • [8] Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout
    Baerwald, Melinda R.
    Meek, Mariah H.
    Stephens, Molly R.
    Nagarajan, Raman P.
    Goodbla, Alisha M.
    Tomalty, Katharine M. H.
    Thorgaard, Gary H.
    May, Bernie
    Nichols, Krista M.
    [J]. MOLECULAR ECOLOGY, 2016, 25 (08) : 1785 - 1800
  • [9] BI K, 2012, BMC GENOMICS, V13
  • [10] Trimmomatic: a flexible trimmer for Illumina sequence data
    Bolger, Anthony M.
    Lohse, Marc
    Usadel, Bjoern
    [J]. BIOINFORMATICS, 2014, 30 (15) : 2114 - 2120