Ramsey Numbers and Adiabatic Quantum Computing

被引:44
|
作者
Gaitan, Frank [1 ]
Clark, Lane [2 ]
机构
[1] Lab Phys Sci, College Pk, MD 20740 USA
[2] So Illinois Univ, Dept Math, Carbondale, IL 62901 USA
关键词
COMPLEXITY; ALGORITHM;
D O I
10.1103/PhysRevLett.108.010501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m, n) with m, n >= 3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m, n). We show how the computation of R(m, n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3, 3) and R(2, s) for 5 <= s <= 7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Models of optical quantum computing
    Krovi, Hari
    NANOPHOTONICS, 2017, 6 (03) : 531 - 541
  • [42] Quantum computing: An IBM perspective
    Steffen, M.
    DiVincenzo, D. P.
    Chow, J. M.
    Theis, T. N.
    Ketchen, M. B.
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2011, 55 (05)
  • [43] On quantum computing for artificial superintelligence
    Grabowska, Anna
    Gunia, Artur
    EUROPEAN JOURNAL FOR PHILOSOPHY OF SCIENCE, 2024, 14 (02)
  • [44] Quantum Computing Circuits and Devices
    Humble, Travis S.
    Thapliyal, Himanshu
    Munoz-Coreas, Edgard
    Mohiyaddin, Fand A.
    Bennink, Ryan S.
    IEEE DESIGN & TEST, 2019, 36 (03) : 69 - 94
  • [45] Polymer Physics by Quantum Computing
    Micheletti, Cristian
    Hauke, Philipp
    Faccioli, Pietro
    PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [46] A Survey on quantum computing technology
    Gyongyosi, Laszlo
    Imre, Sandor
    COMPUTER SCIENCE REVIEW, 2019, 31 : 51 - 71
  • [47] Accuracy versus run time in an adiabatic quantum search
    Rezakhani, A. T.
    Pimachev, A. K.
    Lidar, D. A.
    PHYSICAL REVIEW A, 2010, 82 (05)
  • [48] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
    Sun, Jie
    Liu, Songfeng
    CHINESE PHYSICS B, 2018, 27 (11)
  • [50] De-Signing Hamiltonians for Quantum Adiabatic Optimization
    Crosson, Elizabeth
    Albash, Tameem
    Hen, Itay
    Young, A. P.
    QUANTUM, 2020, 4