Heisenberg-style bounds for arbitrary estimates of shift parameters including prior information

被引:72
作者
Hall, Michael J. W. [1 ]
Wiseman, Howard M. [1 ]
机构
[1] Griffith Univ, Ctr Quantum Dynam, Australian Res Council, Ctr Quantum Computat & Commun Technol, Brisbane, Qld 4111, Australia
关键词
PHASE MEASUREMENTS; OPTICAL-PHASE; QUANTUM; STATES; UNCERTAINTY; ENTROPY;
D O I
10.1088/1367-2630/14/3/033040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A rigorous lower bound is obtained for the average resolution of any estimate of a shift parameter, such as an optical phase shift or a spatial translation. The bound has the asymptotic form k(I)/< 2 vertical bar G vertical bar > where G is the generator of the shift (with an arbitrary discrete or continuous spectrum), and hence establishes a universally applicable bound of the same form as the usual Heisenberg limit. The scaling constant k(I) depends on prior information about the shift parameter. For example, in phase sensing regimes, where the phase shift is confined to some small interval of length L, the relative resolution delta(Phi) over cap /L has the strict lower bound (2 pi e(3))(-1/2)/< 2m vertical bar G(1)vertical bar+1 >, where m is the number of probes, each with generator G(1), and entangling joint measurements are permitted. Generalizations using other resource measures and including noise are briefly discussed. The results rely on the derivation of general entropic uncertainty relations for continuous observables, which are of interest in their own right.
引用
收藏
页数:22
相关论文
共 38 条
[1]   Heterodyne and adaptive phase measurements on states of fixed mean photon number [J].
Berry, D ;
Wiseman, HM ;
Zhang, ZX .
PHYSICAL REVIEW A, 1999, 60 (03) :2458-2466
[2]   How to perform the most accurate possible phase measurements [J].
Berry, D. W. ;
Higgins, B. L. ;
Bartlett, S. D. ;
Mitchell, M. W. ;
Pryde, G. J. ;
Wiseman, H. M. .
PHYSICAL REVIEW A, 2009, 80 (05)
[3]  
BERRY DF, UNPUB
[4]   The uncertainty principle in the presence of quantum memory [J].
Berta, Mario ;
Christandl, Matthias ;
Colbeck, Roger ;
Renes, Joseph M. ;
Renner, Renato .
NATURE PHYSICS, 2010, 6 (09) :659-662
[5]   UNCERTAINTY RELATIONS FOR INFORMATION ENTROPY IN WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 44 (02) :129-132
[6]   Generalized limits for single-parameter quantum estimation [J].
Boixo, Sergio ;
Flammia, Steven T. ;
Caves, Carlton M. ;
Geremia, J. M. .
PHYSICAL REVIEW LETTERS, 2007, 98 (09)
[7]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[8]   Information-theoretic treatment of tripartite systems and quantum channels [J].
Coles, Patrick J. ;
Yu, Li ;
Gheorghiu, Vlad ;
Griffiths, Robert B. .
PHYSICAL REVIEW A, 2011, 83 (06)
[9]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[10]   State estimation for large ensembles [J].
Gill, RD ;
Massar, S .
PHYSICAL REVIEW A, 2000, 61 (04) :16